Advertisement

Design of satisfaction output feedback controls for stochastic nonlinear systems under quadratic tracking risk-sensitive index

  • Liu Yungang 
  • Zhang Jifeng 
  • Pan Zigang 
Article
  • 37 Downloads

Abstract

In this paper, the design problem of satisfaction output feedback controls for stochastic nonlinear systems in strict feedback form under long-term tracking risk-sensitive index is investigated. The index function adopted here is of quadratic form usually encountered in practice, rather than of quartic one used to beg the essential difficulty on controller design and performance analysis of the closed-loop systems. For any given risk-sensitive parameter and desired index value, by using the integrator backstepping method, an output feedback control is constructively designed so that the closed-loop system is bounded in probability and the risk-sensitive index is upper bounded by the desired value.

Keywords

integrator backstepping nonlinear system stochastic disturbance risk-sensitive index output feedback 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Isidori, A., Nonlinear Control Systems, 3rd ed., London: Springer-Verlag, 1995.MATHGoogle Scholar
  2. 2.
    Kanellakopoulos, I., Kokotovic, P. V., More, A. S., Systematic design of adaptive controllers for feedback linearizable systems, IEEE Transactions on Automatic Control, 1991, 36: 1241–1253.MATHCrossRefGoogle Scholar
  3. 3.
    Krstic, M., Kanellakopoulos, I., Kokotovic, P. V., Nonlinear design of adaptive controllers for linear systems, IEEE Transactions on Automatic Control, 1994, 39: 738–752.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Seto, D., Annaswamy, A. M., Baillieul, J., Adaptive control of nonlinear systems with triangular structure, IEEE Transactions on Automatic Control, 1994, 39: 1411–1428.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Jain, S., Khorrami, F., Application of a decentralized adaptive output feedback based on backstepping to power systems, Proceedings of the 34th IEEE Conference on Decision and control (New Orleans, LA), Piscataway: IEEE Control Systems Society, 1995, 1585–1590.Google Scholar
  6. 6.
    Jiang, Z. P., Pomet, J. B., Backstepping-based adaptive controllers for uncertain nonholonomic systems, Proceedings of the 34th IEEE Conference on Decision and control (New Orleans, LA), Piscataway: IEEE Control Systems Society, 1995, 1573–1578.Google Scholar
  7. 7.
    Pan, Z., Basar, T., Adaptive controller design for tracking and disturbance attenuation in parametric-feedback nonlinear systems, IEEE Transactions on Automatic Control, 1998, 43: 1066–1083.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Jiang, Z. P., Nijmeijer, H., A recursive technique for tracking control of nonholonomic systems in chained form, IEEE Transactions on Automatic Control, 1999, 44: 265–279.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ezal, K., Pan, Z., Kokotovic, P. V., Locally optimal backstepping design, IEEE Transactions on Automatic Control, 2000, 45: 260–271.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Krstic, M., Kanellakopouls, I., Kokotovic, P. V., Nonlinear and Adaptive Control Design, New York: Wiley, 1995.Google Scholar
  11. 11.
    Basar, T., Bernhard, P.,\(H_\infty \)-Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach, 2nd ed., Boston: Birkäuser, 1995.MATHGoogle Scholar
  12. 12.
    Jacobson, D. H., Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games, IEEE Transactions on Automatic Control, 1973, 18: 167–172.CrossRefGoogle Scholar
  13. 13.
    James, M. R., Baras, J., Elliott, R. J., Risk-sensitive control and dynamic games for partially observed discrete-time nonlinear systems, IEEE Transactions on Automatic Control, 1994, 39: 780–792.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Runolfsson, T., The equivalence between infinite horizon control of stochastic systems with exponential-of-integral performance index and stochastic differential games, IEEE Transactions on Automatic Control, 1994, 39: 1551–1563.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Whittle, P., Risk-Sensitive Optimal Control, Chichester: John Wiley and Sons, 1990.MATHGoogle Scholar
  16. 16.
    Fleming, W. H., McEneaney, W. M., Risk-sensitive control on an infinite time horizon, SIAM J. Control and Optimization, 1995, 33: 1881–1915.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Fleming, W. H., McEneaney, W. M., Risk-sensitive control with ergodic cost criteria, Proceedings of the 31th IEEE Conference on Decision and Control (Tucson, AZ), Piscataway: IEEE Control Systems Society, 1992, 2048–2052.Google Scholar
  18. 18.
    Nagai, H., Bellman equations of risk-sensitive control, SIAM J. Control and Optimization, 1996, 34: 74–101.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Pan, Z., Basar, T., Model simplification and optimal control of stochastic singularly perturbed systems under exponentiated quadratic cost, SIAM J. Control and Optimization, 1996, 34: 1734–1766.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Florchinger, P., Lyapunov-like techniques for stochastic stability, SIAM J. Control and Optimization, 1995, 33: 1151–1169.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Deng, H., Krstic, M., Output-feedback stochastic nonlinear stabilization, IEEE Transactions on Automatic Control, 1999, 44: 328–333.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Pan, Z., Basar, T., Backstepping controller design for nonlinear stochastic systems under a risk-sensitive cost criterion, SIAM J. Control and Optimization, 1999, 37: 957–995.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Bensoussan, A., Stochastic control of partially observable systems, Cambridge: Cambridge University Press, 1992.MATHGoogle Scholar
  24. 24.
    Bensoussan, A., Elliott, R. J., A finite-dimensional risk-sensitive control problem, SIAM J. Control and Optimization, 1995, 33: 1834–1846.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Bensoussan, A., Elliott, R. J., General finite-dimensional risk-sensitive problems and small noise limits, IEEE Transaction on Automatic Control, 1996, 41: 210–215.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Liu, Y., Pan, Z., Shi, S., Output feedback control design for strict-feedback stochastic nonlinear systems under a risk-sensitive cost, Proceedings of the 40th IEEE Conference on Decision and Control (Florida), Piscataway: IEEE Control Systems Society, 2001, 1269–1274.Google Scholar
  27. 27.
    Khas’minskii, R. Z., Stochastic Stability of Differential Equations, Rockville: S and N International Publishers, 1980.Google Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  1. 1.Academy of Mathematics and System SciencesChinese Academy of SciencesBeijingChina
  2. 2.Dept. of Electrical and Computer Engineering and Computer ScienceUniv. of CincinnatiUSA

Personalised recommendations