Observer and observer-based H control of generalized Hamiltonian systemscontrol of generalized Hamiltonian systems

  • Wang Yuzhen 
  • Ge S. S. 
  • Cheng Daizhan 


This paper deals with observer design for generalized Hamiltonian systems and its applications. First, by using the systems’ structural properties, a new observer design method called Augment Plus Feedback is provided and two kinds of observers are obtained: non-adaptive and adpative ones. Then, based on the obtained observer, H control design is investigated for generalized Hamiltonian systems, and an observer-based control design is proposed. Finally, as an application to power systems, an observer and an observer-based H control law are designed for single-machine infinite-bus systems. Simulations show that both the observer and controller obtained in this paper work very well.


generalized Hamiltonian system adaptive observer zero-state detectable observer-based H control power system 


  1. 1.
    Luenberger, D. G., Observers for multivariable systems, IEEE Trans. on Autom. Contr., 1966, 11: 190–197.CrossRefGoogle Scholar
  2. 2.
    O’Reilly, J., Observer for linear systems, New York: Academic Press, 1983.Google Scholar
  3. 3.
    Slotine, J. J. E., Hedrick, J. K., Misawa, E.A., On sliding observers for nonlinear systems, Journal of Dynamic Systems, Measurement and Control, 1987, 109: 245–252.MATHCrossRefGoogle Scholar
  4. 4.
    Hunt, L. R., Verma, M. S., Observers for nonlinear systems in steady state, IEEE Trans. on Autom. Contr., 1994, 39(10): 2113–2118.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Park, J. K., Shin, D. R., Chung, T. M., Dynamic observers for linear time-invariant systems, Autimatica, 2002, 38: 1083–1087.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Giua, A., Seatzu, C., Basile, F., Observer-based state-feedback control of timed petri nets with deadlock recovery, IEEE Trans. on Autom. Contr., 2004, 49(1): 17–29.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Maschke, B. M., Ortega, R., van der Schaft, A. J., Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation, IEEE Transactions on Automatic Control, 2000, 45(8): 1498–1502.MATHCrossRefGoogle Scholar
  8. 8.
    Ortega, R., van der Schaft, A. J., Maschke, B., et al., Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems, Automatica, 2002, 38(4): 585–596.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cheng, D., Xi, Z., Hong, Y. et al., Energy-based stabilization in power systems, in Proceedings of the 14th IFAC World Congress, Beijing, China, Vol.O, 1999, Oxford: Pergamon Press, 1999, 297–303.Google Scholar
  10. 10.
    Shen, T., Ortega, R., Lu, Q. et al., Adaptive L 2 disturbance attenuation of Hamiltonian systems with parameter perturbations and application to power systems, in Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, Vol.5, 2000, New York: IEEE, 2000, 4939–4944.Google Scholar
  11. 11.
    Sun, Y., Shen, T., Ortega, R. et al., Decentralized controller design for multimachine power systems on Hamiltonian structure, in Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida. New York: IEEE, 2001, 3045–3050.Google Scholar
  12. 12.
    Xi, Z., Cheng, D., Passivity-based stabilization and H control of the Hamiltonian control systems with dissipation and its application to power systems, Int. J. of Control, 2000, 73(18): 1686–1691.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Wang, Y., Cheng, D., Li, C. et al., Dissipative Hamiltonian realization and energy-based L 2-disturbance attenuation control of multimachine power systems, IEEE Trans. on Autom. Contr., 2003, 48(8): 1428–1433.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Wang, Y., Li, C., Cheng, D., Generalized Hamiltonian realization of time-invariant nonlinear systems, Automatica, 2003, 39(8): 1437–1443MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Wang, Y., Li, C., Cheng, D., New approaches to dissipative Hamiltonian realization of nonlinear systems, Science in China, Ser. F, 2003, 46(6): 431–444.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Hebert, S. R., Cruz-Hernandez, C., Synchronization of chaotic systems: A Hamiltonian approach, in Proceedings of the American Control Conference, Chicago, Illinois, June, New York: IEEE, 2000, 769–773.Google Scholar
  17. 17.
    Lohmiller, W., Slotine, J. J. E., Simple observers for Hamiltonian systems, in Proceedings of the American Control Conference, Albuquerque, New Mexico, June, New York: IEEE, 1997, 2748–2753.Google Scholar
  18. 18.
    Lu, Q., Sun, Y., Nonlinear Control of Power Systems, Beijing: Science Press, 1993.Google Scholar
  19. 19.
    van der Schaft, A. J., L 2-gain and Passivity Techniques in Nonlinear Control, Berlin: Springer, 1999.Google Scholar
  20. 20.
    Khalil, H., Nonlinear Systems, 2nd ed., New Jersey: Prentice-Hall, 1996.Google Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.School of Control Science and EngineeringShandong UniversityJinanChina
  2. 2.Department of Electrical and Computer EngineeringThe National University of SingaporeSingapore
  3. 3.Institute of Systems ScienceChinese Academy of SciencesBeijingChina

Personalised recommendations