Novel high-brightness tunneling-regenerated multi-active-region AlGaInP light-emitting diode

  • Guo Xia 
  • Shen Guangdi 
  • Wang Guohong 
  • Wang Xuezhong 
  • Du Jinyu 
  • Gao Guo 
  • Kang L. Wang
Article
  • 39 Downloads

Abstract

In order to resolve the prevailing problems in conventional light-emitting diodes (LEDs), novel high-efficiency tunneling-regenerated multi-active-region (TRMAR) LEDs are proposed, which have such advantages as low heat generation, carrier overflow level and non-radiation recombination rate and whose quantum efficiency and the output optical power can be scaled with the number of the active regions. Experiments show that the on-axis luminous intensity of TRMAR LEDs increases linearly with the number of active regions. The novel LEDs have high quantum efficiency under low current injection and their maximum on-axis luminous intensity exceeds 5 candelas at 20 mA current injection at the peak wavelength of 625 nm with a 15° angle cap.

Keywords

high-brightness AlGaInP light-emitting diodes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stringfellow, G. B., Craford, m. G., High Brightness Light Emitting Diodes, New York: Academic Press, 1988.Google Scholar
  2. 2.
    Sugawara, H., Ishikawa, M., Hatakoshi, G., High-efficiency InGaAlP/GaAs visible light-emitting diodes, Appl. Phys. Lett., 1991, 58(10): 1010–1012.CrossRefGoogle Scholar
  3. 3.
    Lin, J.-F., Wu, M.-C. et al., Highly reliable operation of indium tin oxide AlGaInP orange light-emitting diodes, Electronics Letters, 1994, 30(21): 1793–1794.CrossRefGoogle Scholar
  4. 4.
    Huang, K. H., Yu, J. G., Kuo, C. P. et al., Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555–620 nm spectral region using a thick GaP window layer. Appl. Phys. Lett. 1992, 61(9): 1045–1047.CrossRefGoogle Scholar
  5. 5.
    Guo Xia, Shen Guang-Di, Wang Guo-Hong et al., Tunnel-regenerated multiple-active-region light-emitting diodes with high efficiency, Appl. Phys. Lett., 2001, 79 (18): 2985–2986.CrossRefGoogle Scholar
  6. 6.
    Shen Guang-di, Lian Peng, Guo Xia, et al., High power coupled large cavity lasers and multi-active light emitting diodes APOC 2001, SPIE, 2001, 4580: 19–25.CrossRefGoogle Scholar
  7. 7.
    Casey, H. Jr., Panish, M. B., Heterostructure Lasers, New York: Academic, 1978.Google Scholar
  8. 8.
    Scott, J. W., Geells, R. S., Scott, W. et al. Modeling temperature effects and spatial hole burning to optimize vertical- cavity surface-emitting laser performance. IEEE Journal of Quantum Electronics, 1993, 29(5): 1295–1308.CrossRefGoogle Scholar
  9. 9.
    Chi, G. C., Su, Y. K., Jou, M. J., et al., Window layer for current spreading in InGaAlP light-emitting diode. J. Appl. Phy’s., 1994, 76 (5): 1–3.Google Scholar
  10. 10.
    Kish, F. A., Steraka, F. M., DeFevere, D. C. et al., Very high-efficiency semiconductor wafer-bonged transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes, Appl. Phys. Lett., 1994, 64(21): 2839–2841CrossRefGoogle Scholar
  11. 11.
    Krames, M. R., Ochiai-Holcomb, M., Hofler, G. E. et al., High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency, Appl. Phys. Lett., 1999, 75(16), 2365–2367.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  • Guo Xia 
    • 1
  • Shen Guangdi 
    • 1
  • Wang Guohong 
    • 1
  • Wang Xuezhong 
    • 1
  • Du Jinyu 
    • 1
  • Gao Guo 
    • 1
  • Kang L. Wang
    • 2
  1. 1.Institute of Electronic Engineering and InformationBeijing University of Technology & Beijing Optoelectronic Technology LaboratoryBeijingChina
  2. 2.Device Research Laboratory, Department of Electrical EngineeringUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations