Skip to main content
Log in

A tentative study for the prediction of the CME related geomagnetic storm intensity and its transit time

  • Published:
Science in China Series E Technological Sciences Aims and scope Submit manuscript

Abstract

Using 80 CME-ICME events during 1997.1–2002.9, based on the eruptive source locations of CMEs and solar magnetic field observation at the photosphere, a current sheet magnetic coordinate (CMC) system is established in order to study the propagation of CME and its geoeffectiveness. In context of this coordinate system, the effect of the eruptive source location and the form of heliospheric current sheet (HCS) at the eruptive time of CME on the geomagnetic storm intensity caused by CME and the CME’s transit time at the Earth is investigated in detail. Our preliminary conclusions are: 1) The geomagnetic disturbances caused by CMEs tend to have the so-called “same side-opposite side effect”, i.e. CMEs erupt from the same side of the HCS as the earth would be more likely to arrive at the earth and the geomagnetic disturbances associated with them tend to be of larger magnitude, while CMEs erupting from the opposite side would arrive at the earth with less probability and the corresponding geomagnetic disturbance magnitudes would be relatively weaker. 2) The angular separation between the earth and the HCS affect the corresponding disturbance intensity. That is, when our earth is located near the HCS, adverse space weather events occur most probably. 3) The erupting location of the CME and its nearby form of HCS will also affect its arrival time at the earth. According to these conclusions, in this context of CMC coordinate we arrive at new prediction method for estimating the geomagnetic storm intensity (Dst min) caused by CMEs and their transit times. The application of the empirical model for 80 CME-ICME events shows that the relative error of Dst is within 30% for 59% events with Dst min≤−50 nT, while the averaged absolute error of transit time is lower than 10 h for all events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. MacQueen, R. M., Eddy, J. A., Gosling, J. T. et al., The outer solar corona as observed from skylab: preliminary results, Astrophys. J., 1974, 187: L85-L88.

    Article  Google Scholar 

  2. Gosling, J. T., Hildner, E., Macqueen, R. M et al., Mass ejections from the sun—a view from skylab, Astrophys. J., 1974, 79: 4581–4587.

    Google Scholar 

  3. Burlaga, L. F., Sittler, E., Mariani, F. et al., Magnetic loop behind an interplanetary shock— Voyager, Helios, and IMP 8 observations, J Geophys. Res., 1981, 86(A8): 6673–6684.

    Article  Google Scholar 

  4. Wilson, R. M., Hilder, E., Are interplanetary magnetic clouds manifestations of coronal transients at 1 AU? Solar Phys., 1984, 91: 169–180.

    Article  Google Scholar 

  5. Sheeley, Jr. N. R., Howard, R. A., Koomen, M. J. et al., Coronal mass ejections and interplanetary shocks, J. Geophys. Res., 1985, 90(A1): 163–175.

    Article  Google Scholar 

  6. Gosling, J. T., McComas, D. J., Phillips, J. L. et al., Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections, J. Geophys. Res., 1991, 96: 7831–7839.

    Article  Google Scholar 

  7. Gosling, J. T., The solar flare myth, J. Geophys. Res., 1993, 98(A11): 18937–18949.

    Article  Google Scholar 

  8. Wei, F. S., Zhang, J. H., Huang, S. P., Study of the propagation characteristics of flare-associated interplanetary shock waves in the flare-heliospheric current sheet coordinate system Acta Geophysica Sinica, 1990, 33: 125–134.

    Google Scholar 

  9. Wei, F. S., Liu, S. Q., Zhang, J. H., Study of distribation characteristics of the geomagnetic disturbances corresponding to the flare-associated interplanetary shock waves in the flare-heliospheric current sheet coordinate system, Acta Geophysica Sinica, 1991, 34: 133–138.

    Google Scholar 

  10. Dryer, M., Interplanetary studies: propagation of disturbances between the sun and the magnetosphere, Space Sci. Rev., 1994, 67: 363–419.

    Article  Google Scholar 

  11. Odstrcil, D., Dryer, M., Smith, Z., Propagation of an interplanetary shock along the heliospheric plasma sheet, J. Geophys. Res., 1996, 101(A9): 19973–19986. (doi: 10.1029/96JA00479)

    Article  Google Scholar 

  12. Tokumaru, M., Kojima, M., Fujiki, K. et al., Three-dimensional propagation of interplanetary disturbances detected with raio scintillation measurements at 327 MHz., J. Geophys. Res., 2000, 105(A5): 10435–10453. (doi:10.1029/2000JA900001)

    Article  Google Scholar 

  13. Manoharan, P. K., Gopalswamy, N., Yashiro, S. et al., Influence of coronal mass ejection interaction on propagation of interplanetary shocks, J. Geophys. Res., 2004, 109: A06109. (doi: 10.1029/2003JA010300)

    Article  Google Scholar 

  14. Michalek, G., Gopalswamy, N., Yashiro, S., A new method for estimating widths, velocities, and source location of halo coronal mass ejections, Astrophys. J., 2003, 584: 472–478.

    Article  Google Scholar 

  15. Gopalswamy, N., Lara, A., Yashiro, S. et al., Predicting the 1-AU arrival times of coronal mass ejections, J. Geophys. Res., 2001, 106(A12): 29207–29217. (doi: 10.1029/2001JA000177)

    Article  Google Scholar 

  16. Webb, D. F., Cliver, E. W., Crooker, N. U. et al., Relationship of halo coronal mass ejections, magnetic clouds, and magnetic stoms, J. Geophys. Res., 2000, 105(A4): 7491–7508. (doi: 10.1029/1999JA000275)

    Article  Google Scholar 

  17. Cane, H. V., Richardson, I. G., Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002, J. Geophys. Res., 2003, 108(A4): 1156. (doi: 10.1029/2002JA009817)

    Article  Google Scholar 

  18. Gonzalez, W. D., Joselyn, J. A., Kamide, Y. et al., What is a geomagnetic storm? J. Geophys. Res., 1994, 99(A4): 5771–5792. (doi: 10.1029/93JA02867)

    Article  Google Scholar 

  19. Burton, R. K., McPherron, R. L., Russell, C. T., An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 1975, 80(31): 4204–4214.

    Article  Google Scholar 

  20. O’Brien, T. P., McPherron, R. L., An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay, J. Geophys. Res., 2000, 105(A4): 7707–7719. (doi: 10. 1029/1998JA000437)

    Article  Google Scholar 

  21. Wu, J. G., Lundstedt, H., Neural network modeling of solar wind-magnetosphere interaction, J. Geophys. Res., 1997, 102(A7): 14457–14466. (doi: 10.1029/97JA01081)

    Article  Google Scholar 

  22. Temerin, M., Li, X., A new model for the prediction of Dst on the basis of the solar wind, J Geophys. Res., 2002, 107(A12): 1472. (doi: 10.1029/2001JA007532)

    Article  Google Scholar 

  23. Wilson, R. M., On the behavior of the Dst geomagnetic index in the vicinity of magnetic cloud passages at Earth, J. Geophys. Res., 1990, 95(A1): 215–219.

    Article  Google Scholar 

  24. Wu, C. C., Lepping, R. P., Effects of magnetic clouds on the occurrences of geomagnetic storms: the first 4 years of wind, J. Geophys. Res., 2002a, 107(A10): 1314. (doi: 10.1029/2001JA000161)

    Article  Google Scholar 

  25. Wu, C. C., Lepping, R. P., Effect, of solar wind velocity on magnetic cloud-associated magnetic storm intensity, J. Geophys. Res., 2002b, 107(A11): 1346. (doi: 10.1029/2002JA009396)

    Article  Google Scholar 

  26. Wu, C. C., Lepping, R. P., Relationships for predicting magnetic cloud-associated geomagnetic storms intensity, J. Atmos. and Terr. Phys., 2004, 67: 283–291. (doi: 10.1016/j.jastp.2004.07.040)

    Article  Google Scholar 

  27. Wang, Y. M. Shen, C. L., Wang, S. et al., An empirical formula relating the geomagnetic storm’s intensity to the interplanetary parameters: \( - \overline {VBz} \) and Δt, Geophys. Res. Lett., 2003, 30(20): 2039. (doi: 10.1029/2003GL017901)

    Article  Google Scholar 

  28. Lindsay, G. M., Luhmann, J. G., Russell, C. T. et al., Relationship between coronal mass ejection speeds from coronagraph images and interplanetary characteristics of associated interplanetary coronal mass ejections, J. Geophys. Res., 1999, 104(A6): 12515–12523. (doi: 10.1029/1999JA900051)

    Article  Google Scholar 

  29. Srivastava, N., Venkatakrishnan, P., Relationship between CME speed and geomagnetic storm intensity, Geophys. Res. Lett., 2002, 29(9): 1287 (doi: 10.1029/2001GL013597)

    Article  Google Scholar 

  30. Srivastava, N., Venkatakrishnan, P., Solar and interplanetary sources of major geomagnetic storms during 1996–2002. J. Geophys. Res., 2004, 109: A10103. (doi: 10.1029/2003JA010175)

    Article  Google Scholar 

  31. Gonzalez, W. D., Dal Lago, A., Clúa de Gonzalez, A. L., Prediction of peak-Dst from halo CME/magnetic cloud-speed observations. J. Atmos. and Terr. Phys., 2004, 66: 161–165. (doi: 10.1016/j.jastp.2003.09.006)

    Article  Google Scholar 

  32. Henning, H. M., Scherrer, P. H., Hoeksema, J. T., The influence of the heliospheric current sheet and angular separation on flare-accelerated solar wind, J. Geophys. Res., 1985, 90(A11): 11055–11061.

    Article  Google Scholar 

  33. Zhao, X. P., Hundhausen, A. J., Organization of solar wind plasma properties in a tilted heliomagnetic coordinate system. J. Geophys. Res., 1981, 86(A7): 5423–5430.

    Article  Google Scholar 

  34. Burlaga, L. F., Hundhausen, A. J., Zhao, X. P., The coronal and interplanetary current sheet in early 1976, J. Geophys. Res., 1981, 86(A11): 8893–8898.

    Article  Google Scholar 

  35. Brueckner, G. E., Delaboudiniere, J. P., Howard, R. A. et al., Geomagnetic storms caused by coronal mass ejections (CMEs): March 1996 through June 1997, Geophys. Res. Lett., 1998, 25(15): 3019–3022. (doi: 10.1029/98GL00704)

    Article  Google Scholar 

  36. Wang, Y. M., Ye, P. Z., Wang, S., A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000, J. Geophys. Res., 2002, 107(A11): 1340. (doi: 10.1029/2002JA009244)

    Article  Google Scholar 

  37. Gopalswamy, N., Lara, A., Lepping, R. P., Interplanetary acceleration of coronal mass ejections, Geophys. Res. Lett., 2000, 27(2): 145–148. (doi: 10.1029/1999GL003639)

    Article  Google Scholar 

  38. Macqueen, R. M., Hundhausen, A. J., Conover, C. W., The propagation of coronal mass ejection transients, J. Geophys. Res., 1986, 91(A1): 31–38.

    Article  Google Scholar 

  39. Wei, F. S., Dryer, M., Propagation of solar flare-associated interplanetary shock waves in the heliospheric meridional plane, Solar Phys., 1991, 132: 373–394.

    Article  Google Scholar 

  40. Smith, Z., Odstrcil, D., Dryer, M., A 2.5-dimensional MHD parametric study of interplanetary shock interaction with the heliospheric current sheet/heliospheric plasma sheet, J. Geophys. Res., 1998, 103(A9): 20581–20590. (doi: 10.1029/98JA01994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Xueshang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Feng, X. A tentative study for the prediction of the CME related geomagnetic storm intensity and its transit time. Science in China Ser. E Engineering and Materials Science 48, 648–668 (2005). https://doi.org/10.1360/03ye0240

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/03ye0240

Keywords

Navigation