Advertisement

Science in China Series E Technological Sciences

, Volume 48, Issue 6, pp 648–668 | Cite as

A tentative study for the prediction of the CME related geomagnetic storm intensity and its transit time

  • Zhao Xinhua 
  • Feng Xueshang 
Article

Abstract

Using 80 CME-ICME events during 1997.1–2002.9, based on the eruptive source locations of CMEs and solar magnetic field observation at the photosphere, a current sheet magnetic coordinate (CMC) system is established in order to study the propagation of CME and its geoeffectiveness. In context of this coordinate system, the effect of the eruptive source location and the form of heliospheric current sheet (HCS) at the eruptive time of CME on the geomagnetic storm intensity caused by CME and the CME’s transit time at the Earth is investigated in detail. Our preliminary conclusions are: 1) The geomagnetic disturbances caused by CMEs tend to have the so-called “same side-opposite side effect”, i.e. CMEs erupt from the same side of the HCS as the earth would be more likely to arrive at the earth and the geomagnetic disturbances associated with them tend to be of larger magnitude, while CMEs erupting from the opposite side would arrive at the earth with less probability and the corresponding geomagnetic disturbance magnitudes would be relatively weaker. 2) The angular separation between the earth and the HCS affect the corresponding disturbance intensity. That is, when our earth is located near the HCS, adverse space weather events occur most probably. 3) The erupting location of the CME and its nearby form of HCS will also affect its arrival time at the earth. According to these conclusions, in this context of CMC coordinate we arrive at new prediction method for estimating the geomagnetic storm intensity (Dst min) caused by CMEs and their transit times. The application of the empirical model for 80 CME-ICME events shows that the relative error of Dst is within 30% for 59% events with Dst min≤−50 nT, while the averaged absolute error of transit time is lower than 10 h for all events.

Keywords

coronal mass ejections current sheet magnetic coordinate system geomagnetic storm intensity transit time prediction method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MacQueen, R. M., Eddy, J. A., Gosling, J. T. et al., The outer solar corona as observed from skylab: preliminary results, Astrophys. J., 1974, 187: L85-L88.CrossRefGoogle Scholar
  2. 2.
    Gosling, J. T., Hildner, E., Macqueen, R. M et al., Mass ejections from the sun—a view from skylab, Astrophys. J., 1974, 79: 4581–4587.Google Scholar
  3. 3.
    Burlaga, L. F., Sittler, E., Mariani, F. et al., Magnetic loop behind an interplanetary shock— Voyager, Helios, and IMP 8 observations, J Geophys. Res., 1981, 86(A8): 6673–6684.CrossRefGoogle Scholar
  4. 4.
    Wilson, R. M., Hilder, E., Are interplanetary magnetic clouds manifestations of coronal transients at 1 AU? Solar Phys., 1984, 91: 169–180.CrossRefGoogle Scholar
  5. 5.
    Sheeley, Jr. N. R., Howard, R. A., Koomen, M. J. et al., Coronal mass ejections and interplanetary shocks, J. Geophys. Res., 1985, 90(A1): 163–175.CrossRefGoogle Scholar
  6. 6.
    Gosling, J. T., McComas, D. J., Phillips, J. L. et al., Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections, J. Geophys. Res., 1991, 96: 7831–7839.CrossRefGoogle Scholar
  7. 7.
    Gosling, J. T., The solar flare myth, J. Geophys. Res., 1993, 98(A11): 18937–18949.CrossRefGoogle Scholar
  8. 8.
    Wei, F. S., Zhang, J. H., Huang, S. P., Study of the propagation characteristics of flare-associated interplanetary shock waves in the flare-heliospheric current sheet coordinate system Acta Geophysica Sinica, 1990, 33: 125–134.Google Scholar
  9. 9.
    Wei, F. S., Liu, S. Q., Zhang, J. H., Study of distribation characteristics of the geomagnetic disturbances corresponding to the flare-associated interplanetary shock waves in the flare-heliospheric current sheet coordinate system, Acta Geophysica Sinica, 1991, 34: 133–138.Google Scholar
  10. 10.
    Dryer, M., Interplanetary studies: propagation of disturbances between the sun and the magnetosphere, Space Sci. Rev., 1994, 67: 363–419.CrossRefGoogle Scholar
  11. 11.
    Odstrcil, D., Dryer, M., Smith, Z., Propagation of an interplanetary shock along the heliospheric plasma sheet, J. Geophys. Res., 1996, 101(A9): 19973–19986. (doi: 10.1029/96JA00479)CrossRefGoogle Scholar
  12. 12.
    Tokumaru, M., Kojima, M., Fujiki, K. et al., Three-dimensional propagation of interplanetary disturbances detected with raio scintillation measurements at 327 MHz., J. Geophys. Res., 2000, 105(A5): 10435–10453. (doi:10.1029/2000JA900001)CrossRefGoogle Scholar
  13. 13.
    Manoharan, P. K., Gopalswamy, N., Yashiro, S. et al., Influence of coronal mass ejection interaction on propagation of interplanetary shocks, J. Geophys. Res., 2004, 109: A06109. (doi: 10.1029/2003JA010300)CrossRefGoogle Scholar
  14. 14.
    Michalek, G., Gopalswamy, N., Yashiro, S., A new method for estimating widths, velocities, and source location of halo coronal mass ejections, Astrophys. J., 2003, 584: 472–478.CrossRefGoogle Scholar
  15. 15.
    Gopalswamy, N., Lara, A., Yashiro, S. et al., Predicting the 1-AU arrival times of coronal mass ejections, J. Geophys. Res., 2001, 106(A12): 29207–29217. (doi: 10.1029/2001JA000177)CrossRefGoogle Scholar
  16. 16.
    Webb, D. F., Cliver, E. W., Crooker, N. U. et al., Relationship of halo coronal mass ejections, magnetic clouds, and magnetic stoms, J. Geophys. Res., 2000, 105(A4): 7491–7508. (doi: 10.1029/1999JA000275)CrossRefGoogle Scholar
  17. 17.
    Cane, H. V., Richardson, I. G., Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002, J. Geophys. Res., 2003, 108(A4): 1156. (doi: 10.1029/2002JA009817)CrossRefGoogle Scholar
  18. 18.
    Gonzalez, W. D., Joselyn, J. A., Kamide, Y. et al., What is a geomagnetic storm? J. Geophys. Res., 1994, 99(A4): 5771–5792. (doi: 10.1029/93JA02867)CrossRefGoogle Scholar
  19. 19.
    Burton, R. K., McPherron, R. L., Russell, C. T., An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 1975, 80(31): 4204–4214.CrossRefGoogle Scholar
  20. 20.
    O’Brien, T. P., McPherron, R. L., An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay, J. Geophys. Res., 2000, 105(A4): 7707–7719. (doi: 10. 1029/1998JA000437)CrossRefGoogle Scholar
  21. 21.
    Wu, J. G., Lundstedt, H., Neural network modeling of solar wind-magnetosphere interaction, J. Geophys. Res., 1997, 102(A7): 14457–14466. (doi: 10.1029/97JA01081)CrossRefGoogle Scholar
  22. 22.
    Temerin, M., Li, X., A new model for the prediction of Dst on the basis of the solar wind, J Geophys. Res., 2002, 107(A12): 1472. (doi: 10.1029/2001JA007532)CrossRefGoogle Scholar
  23. 23.
    Wilson, R. M., On the behavior of the Dst geomagnetic index in the vicinity of magnetic cloud passages at Earth, J. Geophys. Res., 1990, 95(A1): 215–219.CrossRefGoogle Scholar
  24. 24.
    Wu, C. C., Lepping, R. P., Effects of magnetic clouds on the occurrences of geomagnetic storms: the first 4 years of wind, J. Geophys. Res., 2002a, 107(A10): 1314. (doi: 10.1029/2001JA000161)CrossRefGoogle Scholar
  25. 25.
    Wu, C. C., Lepping, R. P., Effect, of solar wind velocity on magnetic cloud-associated magnetic storm intensity, J. Geophys. Res., 2002b, 107(A11): 1346. (doi: 10.1029/2002JA009396)CrossRefGoogle Scholar
  26. 26.
    Wu, C. C., Lepping, R. P., Relationships for predicting magnetic cloud-associated geomagnetic storms intensity, J. Atmos. and Terr. Phys., 2004, 67: 283–291. (doi: 10.1016/j.jastp.2004.07.040)CrossRefGoogle Scholar
  27. 27.
    Wang, Y. M. Shen, C. L., Wang, S. et al., An empirical formula relating the geomagnetic storm’s intensity to the interplanetary parameters: \( - \overline {VBz} \) and Δt, Geophys. Res. Lett., 2003, 30(20): 2039. (doi: 10.1029/2003GL017901)CrossRefGoogle Scholar
  28. 28.
    Lindsay, G. M., Luhmann, J. G., Russell, C. T. et al., Relationship between coronal mass ejection speeds from coronagraph images and interplanetary characteristics of associated interplanetary coronal mass ejections, J. Geophys. Res., 1999, 104(A6): 12515–12523. (doi: 10.1029/1999JA900051)CrossRefGoogle Scholar
  29. 29.
    Srivastava, N., Venkatakrishnan, P., Relationship between CME speed and geomagnetic storm intensity, Geophys. Res. Lett., 2002, 29(9): 1287 (doi: 10.1029/2001GL013597)CrossRefGoogle Scholar
  30. 30.
    Srivastava, N., Venkatakrishnan, P., Solar and interplanetary sources of major geomagnetic storms during 1996–2002. J. Geophys. Res., 2004, 109: A10103. (doi: 10.1029/2003JA010175)CrossRefGoogle Scholar
  31. 31.
    Gonzalez, W. D., Dal Lago, A., Clúa de Gonzalez, A. L., Prediction of peak-Dst from halo CME/magnetic cloud-speed observations. J. Atmos. and Terr. Phys., 2004, 66: 161–165. (doi: 10.1016/j.jastp.2003.09.006)CrossRefGoogle Scholar
  32. 32.
    Henning, H. M., Scherrer, P. H., Hoeksema, J. T., The influence of the heliospheric current sheet and angular separation on flare-accelerated solar wind, J. Geophys. Res., 1985, 90(A11): 11055–11061.CrossRefGoogle Scholar
  33. 33.
    Zhao, X. P., Hundhausen, A. J., Organization of solar wind plasma properties in a tilted heliomagnetic coordinate system. J. Geophys. Res., 1981, 86(A7): 5423–5430.CrossRefGoogle Scholar
  34. 34.
    Burlaga, L. F., Hundhausen, A. J., Zhao, X. P., The coronal and interplanetary current sheet in early 1976, J. Geophys. Res., 1981, 86(A11): 8893–8898.CrossRefGoogle Scholar
  35. 35.
    Brueckner, G. E., Delaboudiniere, J. P., Howard, R. A. et al., Geomagnetic storms caused by coronal mass ejections (CMEs): March 1996 through June 1997, Geophys. Res. Lett., 1998, 25(15): 3019–3022. (doi: 10.1029/98GL00704)CrossRefGoogle Scholar
  36. 36.
    Wang, Y. M., Ye, P. Z., Wang, S., A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000, J. Geophys. Res., 2002, 107(A11): 1340. (doi: 10.1029/2002JA009244)CrossRefGoogle Scholar
  37. 37.
    Gopalswamy, N., Lara, A., Lepping, R. P., Interplanetary acceleration of coronal mass ejections, Geophys. Res. Lett., 2000, 27(2): 145–148. (doi: 10.1029/1999GL003639)CrossRefGoogle Scholar
  38. 38.
    Macqueen, R. M., Hundhausen, A. J., Conover, C. W., The propagation of coronal mass ejection transients, J. Geophys. Res., 1986, 91(A1): 31–38.CrossRefGoogle Scholar
  39. 39.
    Wei, F. S., Dryer, M., Propagation of solar flare-associated interplanetary shock waves in the heliospheric meridional plane, Solar Phys., 1991, 132: 373–394.CrossRefGoogle Scholar
  40. 40.
    Smith, Z., Odstrcil, D., Dryer, M., A 2.5-dimensional MHD parametric study of interplanetary shock interaction with the heliospheric current sheet/heliospheric plasma sheet, J. Geophys. Res., 1998, 103(A9): 20581–20590. (doi: 10.1029/98JA01994)CrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.SIGMA Weather Group, Key Laboratory of Space Weather, Center for Space Science and Applied ResearchChinese Academy of SciencesBeijingChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina
  3. 3.School of Geophysics and Geoinformation SystemsChina University of GeosciencesBeijingChina

Personalised recommendations