Advertisement

Science in China Series D: Earth Sciences

, Volume 48, Issue 12, pp 2081–2091 | Cite as

Sm-Nd and zircon SHRIMP U-Pb dating of Huilanshan mafic granulite in the Dabie Mountains and its zircon trace element geochemistry

  • Zhenhui Hou
  • Shuguang Li
  • Nengsong Chen
  • Qiuli Li
  • Xiaoming Liu
Article

Abstract

The mafic granulites from Huilanshan are outcropped on the center of the Luotian dome in the northern Dabie Mountains. The Sm-Nd isochron defined by granulite-facies metamorphic minerals (garnet+clinopyroxene+hypersthene) yields an age of 136 ± 18 Ma indicating the early Cretaceous granulite-facies metamorphism. The cathodoluminescence (CL) images of zircons from the granulite show clearly core-mantle-rim structures. The zircon cores are characterized by typical oscillatory zoning and highly HREE enriched patterns, which suggests their magma origin. Some zircon cores among them with little Pb loss give SHRIMP U-Pb ages ranging from 753 to 780 Ma, which suggests that the protolith of Huilanshan granulite is Neoproterozoic mafic rocks. The zircon mantles usually cut across the oscillatory zone of the zircon cores have 3-10 times lower REE, Th, U, Y, Nb and Ta contents than the igneous zircon cores but have high common Pb contents. These characteristics suggest that they were formed by hydrothermal alteration of the igneous zircons. The part of zircon mantles with little Pb loss give a similar SHRIMP U-Pb age (716-780 Ma) to the igneous zircon cores, which implies that the hydrothermal events occurred closely to the magmatic emplacement. In view of the strong early Cretaceous magmatism in the Luotian dome, consequently, the Huilanshan mafic granulite was formed by heating of the Neoproterozoic mafic rocks in mid-low crust, which caused the granulite-facies metamorphism underneath the Dabie Mountains. The similarity between the granulite metamorphic age (136±18 Ma) defined by Sm-Nd isochron and K-Ar age of 123-127 Ma given by amphible from the gneiss in Luotian dome suggests a rapid uplifting of the Luotian dome, which may result in further exhumation of the ultrahigh pressure metamorphic rocks in the Dabie Mountains.

Keywords

Dabie orogen granulite zircon U-Pb ages Sm-Nd age 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    You, Z. D., Chen, N. S., Chalokwu, C. I., The metamorphism of depper crust in the Dabie Mountains: as evidenced by the study of granulites near Huilanshan, Luotian, Acta Petrologica Sinica (in Chinese with English abstract), 1995, 11(2): 137–147.Google Scholar
  2. 2.
    Chen, N. S., You, Z. D., Suo, S. T. et al., U-Pb zircon ages of intermediate granulites and deformed granites in the Dabie Mountains, central China, Chinese Science Bulletin, 1996, 41(22): 1886–1890.Google Scholar
  3. 3.
    Jian, P., Yang, W. R., Zhang, Z. C., 207Pb/206Pb zircon dating of Huangtuling hypersthene-garnet-biotite gneiss from the Dabie Mountains, Luotina county, Hubei province, China: New evidence for early Precambrian evolution, Acta Geologica Sinica, 1999, 73(1): 78–83.Google Scholar
  4. 4.
    Zhou, H., Li, X., Liu, Y. et al., Age of granulite from Huangtuling in the Dabie Mountains: Pb-Pb dating of garnet by a stepwise dissolution technique, Chinese Science Bulletin, 1999, 44: 941–944.CrossRefGoogle Scholar
  5. 5.
    Ma, C. Q., Ehlers, C., Xu, C. et al., The roots of the Dabieshan ul-trahigh-pressure metamorphic terrain: constraints from geochemistry and Nd-Sr isotope systematics, Precambrian Research, 2000, 2090 Science in China Ser. 102: 279–301.Google Scholar
  6. 6.
    Zheng, Y. F., Fu, B., Li, Y. L. et al., Oxygen isotope composition of granulites from Dabieshan in eastern China and its implications for geodynamics of Yangtze plate subduction, Phys. Chem. Earth. (A), 2001, 26: 673–684.CrossRefGoogle Scholar
  7. 7.
    Wu, Y. B., Chen, D. G., Xia, Q. K. et al., Insitu trace element analyses and Pb-Pb dating of zircons in granulite from Huangtuling, Dabieshan by LAM-ICP-MS, Science in China, Series D, 2003, 46(11): 1161–1170.CrossRefGoogle Scholar
  8. 8.
    Wu, Y. B., Chen, D. G., Xia, Q. K. et al., SIMS U-Pb dating of zircons in granulite of Huangtuling from northern Dabieshan, Acta Petrologica Sinica (in Chinese with English abstract), 2002, 18(3), 378–382.Google Scholar
  9. 9.
    Yang, W. R., Jian, P., Geochronological study of Caledonian granulite and high-pressure gneiss in the Dabie Mountains, Acta Geologica Sinica, 1998, 72(3): 264–270.Google Scholar
  10. 10.
    Foland, K. A., Allen, J. C., Magma sources for Mesozoic anorogenic granites of the White Mountain magma series, New England, USA, Contributions to Mineralogy and Petrology, 1991, 109: 195–211.CrossRefGoogle Scholar
  11. 11.
    Ludwig, K. R., User’s manual for Isoplot/EX, v2.06, A geochronological Toolkit for Microsoft Excel, Berkely Geochronological Center, Special Publication, 1999, 47.Google Scholar
  12. 12.
    Song, B., Zhang, Y. H., Wan, Y. S. et al., Mount making and procedure of the SHRIMP dating, Geological Review (in Chinese with English abstract), 2002, 48(Supp.): 26–30.Google Scholar
  13. 13.
    Williams, I. S., Claesson, S., Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandianavian Caledonides: II Ion microprobe zircon U-Th-Pb, Contributions to Mineralogy and Petrology, 1987, 97: 205–217.Google Scholar
  14. 14.
    Compston, W., Williams, I. S., Kirschvink, J. L. et al., Zircon U-Pb ages for the early Cambrian time-scale, J. Geol. Soc., 1992, 149: 171–184.CrossRefGoogle Scholar
  15. 15.
    Ludwig, K. R., Squid 1.02: A user manual, Berkeley Geochronological Center, Special Publication, 2001: 1–19.Google Scholar
  16. 16.
    Gao, S., Liu, X. M., Yuan, H. L. et al., Determination of forty two major and trace elements in USGS and NIST SRM glasses by Laser ablation-inductively coupled plasmamass spectrometry, Journal of Geostandards and Geoanalysis, 2002, 26(2): 181–196.CrossRefGoogle Scholar
  17. 17.
    Sun, S. S., McDonough, W. F., Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes (eds. Saunders, A. D., Norry, M. J.), Magmatism in the Ocean Basins, Geological Society Special Publication, London, 1989, 42: 313–345.Google Scholar
  18. 18.
    Ames, L., Zhou, G. Z., Xiong, B. C., Geochronology and isotopic character of ultrahigh pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China, Tectonics, 1996, 15: 472–489.CrossRefGoogle Scholar
  19. 19.
    Rowley, D. B., Xue, F., Tucker, R. D. et al., Ages of ultrahigh pressure metamorphic and protolith orthgenisses from the eastern Dabie Shan: U/Pb zircon geochronology, Earth. Planet. Sci. Lett., 1997, 151: 191–203CrossRefGoogle Scholar
  20. 20.
    Xu, H. F., Yang, T. N., Liu, F. L. et al., Multi agetime evolution of granite gneisses-granite in the southern Sulu HP-UHP meta-morphic belt, Acta Geologica Sinica (in Chinese with English abstract), 2001, 75(3): 371–378.Google Scholar
  21. 21.
    Rumble, D., Giorgis, D., Oreland, T. et al., Low δ18O zircons, U-Pb dating, and the age of the Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China, Geochim. Cosmochim. Acta, 2002, 66: 2299–2306.CrossRefGoogle Scholar
  22. 22.
    Zheng, Y. F., Chen, F. K., Gong, B. et al., Protolith features of UHP metamorphic rocks from the Dabie-Sulu orogen: Evidence from zircon oxygen isotope and U-Pb ages, Chinese Science Bulletin (in Chinese), 2003, 48(2): 110–119.Google Scholar
  23. 23.
    Hacker, B. R., Ratschbacher, L., Webb, L. et al., U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie orogen, China, Earth. Planet. Sci. Lett., 1998, 161: 215–230.CrossRefGoogle Scholar
  24. 24.
    Li, S. G., Hong, J. A., Li, H. M. et al., U-Pb zircon ages of the pyroxenite-gabbro intrusions in Dabie Mountains and their geological implications, Geological Journal of China Universities (in Chinese with English abstract), 1999, 5(3): 351–355.Google Scholar
  25. 25.
    Ratschbacher, L., Hacker, B. R., Webb, L. E. et al., Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan-Lu fault, J. Geophys. Res., 2000, 105: 13303–13338.CrossRefGoogle Scholar
  26. 26.
    Zhu, G., Wang, D. X., Liu, G. S. et al., Extensional activities along the Tan-Lu fault zone and its geodynamic setting, Chinese Journal of Geology (in Chinese with English abstract), 2001, 36(3): 269–278.Google Scholar
  27. 27.
    Xu, C. H., Zhou, Z. Y., Ma, C. Q. et al., Geochronological constraints on 140-85Ma thermal doming extension in the Dabie orogen, central China, Science in China, Series D, 2002, 45(9): 801–817.Google Scholar
  28. 28.
    Li, S. G., Huang, F., Li, H., Post-collisional lithosphere delamination of the Dabie-Sulu orogen, Chinese Science Bulletin, 2002, 47(3): 259–233.CrossRefGoogle Scholar
  29. 29.
    Zhai, M. G., Zhu, R. X., Liu, J. M. et al., Time range of Mesozoic tectonic regime inversion in eastern North China Block, Science in China, Series D, 2004, 47(2): 151–159.CrossRefGoogle Scholar
  30. 30.
    Lee, J., Williams, I., Ellis, D., Pb, U and Th diffusion in nature zircon, Nature, 1997, 390: 159–162.CrossRefGoogle Scholar
  31. 31.
    Hansen, B. T., Frederichsen, J. D., The influence of recent Pb-loss on the interpretation of disturbed U-Pb systems in zircons from igneous rocks in East Greenland, Lithos., 1989, 23: 209–223.CrossRefGoogle Scholar
  32. 32.
    Sinha, A. K., Wayne, D. M., Hewitt, D. A., The hydrothermal stability of zircon-preliminary experimental and isotopic studies, Geochim Cosmochim Acta, 1992, 56: 3551–3560.CrossRefGoogle Scholar
  33. 33.
    Geisler, T., Pidgeon, R. T., Kurtz, R., Experimental hydrothermal alteration of partially metamict zircon, American Mineralogist, 2003, 88: 1496–1513.Google Scholar
  34. 34.
    Watson, E. B., Cherniak, D. J., Hanchar, J. M. et al., The incorporation of Pb into zircon, Chemical Geology, 1997, 141: 19–31.CrossRefGoogle Scholar
  35. 35.
    Schaltegger, U., Fanning, C. M., Geünther, D., Growth, annealing and recrystallization of zircon and preservation of monazite in highgrade metamorphism: conventional and insitu U-Pb isotope, cathodoluminescence and microchemical evidence, Contributions to Mineralogy and Petrology, 1999, 134: 186–201.CrossRefGoogle Scholar
  36. 36.
    Vavra, G., Schmid, R., Gebauer, D., Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps), Contributions to Mineralogy and Petrology, 1999, 134: 380–404.CrossRefGoogle Scholar
  37. 37.
    Hoskin, P. W. O., Black, L. P., Metamorphic zircon formation by solidstate recrystallization of protolith igneous zircon, J. Metamorphic. Geol., 2000, 18: 423–439.CrossRefGoogle Scholar
  38. 38.
    Li, S. G., Jagoutz, E., Chen, Y. Z. et al., Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, central China, Geochim. Cosmochim. Acta, 2000, 64(6): 1077–1093.Google Scholar
  39. 39.
    Li, S. G., Jagoutz, E., Lo, C. H. et al., Sm-Nd, Rb-Sr and 40Ar-39Ar isotopic systematics of the ultrahigh pressure metamorphic rocks in the Dabie-Sulu belt, Central China: A retrospective view, International Geol. Review, 1999, 41(12): 1114–1124.Google Scholar
  40. 40.
    Wang, G. C., Yang, W. R., Structural and chronological evidence of the Luotian dome in the core of the eastern Dabie Mountains, central China, Earth Science-Journal of China University of Geosciences (in Chinese with English abstract), 1996, 21(5): 524–528.Google Scholar
  41. 41.
    Wang, G. C., Yang, W. R., Uplift evolution during Mesozoic- Cenozoic of the Dabie orogenic belt: Evidence from the tectono-chronology, Earth Science-Journal of China University of Geosciences (in Chinese with English abstract), 1998, 23(5): 461–467.Google Scholar
  42. 42.
    Harrison, T. M., Diffusion of 40Ar in hornblende, Contributions to Mineralogy and Petrology, 1981, 78: 324–331.CrossRefGoogle Scholar
  43. 43.
    Kay, R. W., Kay, S. M., Delamination and delamination magmatism, Tectonophysics, 1993, 219: 177–189.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  • Zhenhui Hou
    • 1
    • 2
  • Shuguang Li
    • 1
  • Nengsong Chen
    • 3
  • Qiuli Li
    • 1
  • Xiaoming Liu
    • 2
  1. 1.School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.The Key Laboratory of Continental Dynamics of the Ministry of EducationNorthwest UniversityXi’anChina
  3. 3.Faculty of Earth SciencesChina University of GeosciencesWuhanChina

Personalised recommendations