Nb/Ta variations of mafic volcanics on the Archean-Proterozoic boundary: Implications for the Nb/Ta imbalance

  • Yongsheng Liu
  • Shan Gao
  • Xuance Wang
  • Shenghong Hu
  • Jianqi Wang


The HFSE and REE of the Precambrian mafic volcanics from the North China craton demonstrate obvious A(Archean)-P(Proterozoic) boundary. The Neoarchean mafic volcanics show weak correlation between HFSE and TiO2. Their superchondritic Nb/Ta ratio (18.8±1.2) could be attributed to partial melting of mantle peridotite in the presence of garnet. Compared with Neoarchean mafic volcanics, the Paleoproterozoic ones have higher HFSE contents and lower Nb/Ta ratio (15.6±2.9). The significantly elevated HFSE and REE contents of Paleoproterozoic mafic volcanics imply metasomatic enrichment of mantle source, in which Ti-rich silicates could be present as suggested by significant positive correlations between TiO2 and HFSE. The global database of Precambrian mafic volcanics shows a similar A-P boundary. 23 Archean mafic volcanic suites yield an average Nb/Ta ratio of 17.8±1.9 higher than or close to the PM value; Proterozoic mafic volcanics from 28 suites yield an average Nb/Ta ratio of 14.7±4.1 close to the bulk continental crust (BCC) value (11–17.5). Thus, we suggest that the Nb/Ta deficit could be mainly formed in post-Archean time. Archean mafic volcanics could be one of the geochemical reservoirs complementing the low Nb/Ta of the post-Archean continental crust and DM.


Precambrian mafic volcanics Nb/Ta deficit Archean-Proterozoic boundary 


  1. 1.
    Hofmann, A. W., Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust, Earth Planet. Sci. Lett., 1988, 90: 297–314.CrossRefGoogle Scholar
  2. 2.
    Taylor, S. R., McLennan, S. M., The Continental Crust: Its Composition and Evolution, Oxford: Blackwell, 1985.Google Scholar
  3. 3.
    Jochum, K. P., Pfander, J., Snow, J. E. et al., Nb/Ta in mantle and crust, EOS, 1997, 78: 804.Google Scholar
  4. 4.
    Rudnick, R. L., Fountain, D. M., Nature and composition of the continental crust: A lower crustal perspective, Rev. Geophys., 1995, 33: 267–309.CrossRefGoogle Scholar
  5. 5.
    Wedepohl, K. H., The composition of the continental crust, Geochim. Cosmochim. Acta, 1995, 59: 1217–1232.CrossRefGoogle Scholar
  6. 6.
    Gao, S., Luo, T. C., Zhang, B. R. et al., Chemical composition of the continental crust as revealed by studies in East China, Geochim. Cosmochim. Acta, 1998, 62: 1959–1975.CrossRefGoogle Scholar
  7. 7.
    Barth, M. G., McDonough, W. F., Rudnick, R. L., Tracking the budget of Nb and Ta in the continental crust, Chem. Geol., 2000, 165: 197–213.CrossRefGoogle Scholar
  8. 8.
    Sun, S. S., McDonough, W. F., Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, in Magmatism in the Ocean Basins ((eds. Saunders, A. D., Norry, M. J.), Geol. Soc. London, Spec. Publ., 1989, 42: 313–345.Google Scholar
  9. 9.
    McDonough, W. F., Partial melting of subducted oceanic crust and isolation of its residual eclogitic lithology, Phil. Trans. R. Soc. Lond., 1991, 335: 407–418.CrossRefGoogle Scholar
  10. 10.
    Green, T. H., Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system, Chem. Geol., 1995, 120: 347–359.CrossRefGoogle Scholar
  11. 11.
    Stolz, A. J., Jochum, K. P., Spettel, B. et al., Fluid- and melt-related enrichment in the subarc mantle: Evidence from Nb/Ta variations in island-arc basalts, Geology, 1996, 24: 587–590.CrossRefGoogle Scholar
  12. 12.
    Lundstrom, C. C., Shaw, H. F., Ryerson, F. J. et al., Crystal chemical control of clinopyroxene-melt partitioning in the Di-Ab-An system: Implications for elemental fractionations in the depleted mantle, Geochim. Cosmochim. Acta, 1998, 62: 2849–2862.CrossRefGoogle Scholar
  13. 13.
    Leybourne, M. I., Wagoner, N. V., Ayres, L. D., Partial melting of a refractory subducted slab in a Paleoproterozoic island arc: Implications for global chemical cycles, Geology, 1999, 27(8): 731–734.CrossRefGoogle Scholar
  14. 14.
    Rudnick, R. L., Barth, M., Horn, I. et al., Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle, Science, 2000, 287: 278–281.CrossRefGoogle Scholar
  15. 15.
    Wade, J., Wood, B. J., The Earth’s ‘missing’ niobium may be in the core, Nature, 2001, 409: 75–78.CrossRefGoogle Scholar
  16. 16.
    Zhao, G. C., Wilde, S. A., Cawood, P. A. et al., Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting, Inter. Geol. Rev., 1998, 40: 706–721.CrossRefGoogle Scholar
  17. 17.
    Zhao, G. C., Cawood, P. A., Wilde, S. A. et al., Metamorphism of basement rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic tectonic evolution, Precam. Res., 2000, 103: 55–88.CrossRefGoogle Scholar
  18. 18.
    Zhao, G. C., Wilde, S. A., Cawood, P. A. et al., Archean blocks and their boundaries in the North China Craton: Lithologycal, geochemical, structural and P-T path constraints and tectonic evolution, Precam. Res., 2001, 107: 45–73.CrossRefGoogle Scholar
  19. 19.
    Li, J. H., Kusky, T. M., Huang, X. N., Archean podiform chromitites and mantle tectonites in ophiolitic mélange, North China Craton: A record of early oceanic mantle processes, GSA Today, 2000, 12(7): 4–11.CrossRefGoogle Scholar
  20. 20.
    Wang, K. Y., Hao, J., Wilde, S. et al., Reconsideration of some key geological problems of late Archean-early Proterozoic in the Wutaishan-Hengshan area: Constraints from SHRIMP U-Pb zircon data, Scientia Geologica Sin. (in Chinese with English Abstr.), 2000, 35(2): 175–184.Google Scholar
  21. 21.
    Shen, B. F., Li, J. J., Mao, D. B., Geological feature types and evolution of greenstone belts in the North China Platform, Progress Precam. Res., 1997, 20(1): 2–11.Google Scholar
  22. 22.
    Yu, J. H., Wang, D. Z., Wang, C. Y., Geological characteristics and petrogenesis of the early Proterozoic volcanic rocks from Lüliang Group, Shanxi Province, Acta Petrologica Sin. (in Chinese with English Abstr.), 1997, 13: 59–70.Google Scholar
  23. 23.
    Sun, D. Z., Hu, W. X., Precambrian chronotectonic framework and chronocrustal structure of the Zhongtiao Mountain (in Chinese with English Abstr.), Beijing: Geological Publishing House, 1993, 41–45.Google Scholar
  24. 24.
    Liu, Y. S., Hu, S. H., Liu, X. M. et al., Accurate analysis of Zr, Hf, Nb and Ta in high-grade metamorphic rocks with ICP-MS, Earth Sci. – J. China Univ. Geosci. (in Chinese with English Abstr.), 2003, 28(2): 151–156.Google Scholar
  25. 25.
    Shaw, D. M., Kudo, A. M., A test of the discriminant function in the amphibolite problem, Mineral. Mag., 1965, 34: 423–435.CrossRefGoogle Scholar
  26. 26.
    Liu, J. Z., Zhang, F. Q., Ouyang, Z. Y. et al., Geochemistry and chronology of the Jiehekou Group metamorphic basic volcanic rocks in the Lüliang Mountain area, Shanxi, China, Sci. in China, Ser. D, 2003, 46(11): 1171–1181.Google Scholar
  27. 27.
    Zhao, T. P., Jin, C. W., Zhai, M. G. et al., Geochemistry and petrogenesis of the Xiong' er Group in the southern regions of the North China Craton, Acta Petrologica Sin. (in Chinese with English Abstr.), 2002, 18(1): 59–69.Google Scholar
  28. 28.
    Ling, W. L., Gao, S., Ouyang, J. P. et al., Time and tectonic setting of the Xixiang Group: Constraints from zircon U-Pb geochronology and geochemistry, Sci. in China, Ser. D, 2002, 45(9): 818–831.Google Scholar
  29. 29.
    Ling, W. L., Wang, X. H., Chen, J. P. et al., Recognition and geological significance of Zhen’an arc-volcanic suite, South Qinling Orogenic Belt, Geochimica (in Chinese with English Abstr.), 2002, 31(3): 222–229.Google Scholar
  30. 30.
    Ling, W. L., Cheng, J. P., Wang, X. H. et al., Geochemical features of the Neoproterozoic igneous rocks from the Wudang region and their implications for the reconstruction of the Jinning tectonic evolution along the south Qinling orogenic belt, Acta Petrologica Sinica (in Chinese with English Abstr.), 2002, 18(1): 25–36.Google Scholar
  31. 31.
    Xia, L. X., Xia, Z. C., Zhao, J. T. et al., Determination of properties of Proterozoic continental flood basalts of western part from North Qilian Mountains, Sci. in China, Ser. D, 1999, 5(42): 506–514.Google Scholar
  32. 32.
    Li, X. H., Lee, C. Y., Liu, Y. et al., Geochemical characteristics of the Paleoproterozoic meta-volcanics in the Cathaysia block and its tectonic significance, Acta Petrologica Sin. (in Chinese with English Abstr.), 1999, 15(3): 364–371.Google Scholar
  33. 33.
    Zhou, M. F., Zhao, T. P., Malpas, J. et al., Crustal-contaminated komatiitic basalts in Southern China: products of a Proterozoic mantle plume beneath the Yangtze Block, Precam. Res., 2000, 103: 175–189.CrossRefGoogle Scholar
  34. 34.
    Hollings, P., Archean Nb-enriched basalts in the northern Superior Province, Lithos, 2002, 64: 1–14.CrossRefGoogle Scholar
  35. 35.
    McDonough, W. F., Sun, S. S., The composition of the earth, Chem. Geol., 1995, 120: 223–253.CrossRefGoogle Scholar
  36. 36.
    Sajona, F. G., Maury, R. C., Bellon, H. et al., High field strength element enrichment of Pliocene–Pleistocene island arc basalts, Zamboanga Peninsula, Western Mindanao (Philippines), J. Petrol., 1996, 37: 693–726.Google Scholar
  37. 37.
    Dunn, T., Sen, C., Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: A combined analytical and experimental study, Geochim. Cosmochim. Acta, 1994, 58: 717–733.CrossRefGoogle Scholar
  38. 38.
    Hauri, E. H., Wagner, T. P., Grove, T. L., Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts, Chem. Geol., 1994, 117: 149–166.CrossRefGoogle Scholar
  39. 39.
    Green, T. H., Sie, S. H., Ryan, C. G. et al., Proton microprobe-determined partitioning of Nb, Ta, Zr, Sr and Y between garnet, clinopyroxene and basaltic magma at high pressure and temperature, Chem. Geol., 1989, 74: 201–216.CrossRefGoogle Scholar
  40. 40.
    Jenner, G. A., Foley, S. F., Jackson, S. E. et al., Determination of partition coefficients for trace elements in high pressure-temperature experimental run products by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS), Geochim. Cosmochim. Acta, 1994, 58: 5099–5103.Google Scholar
  41. 41.
    Horn,.I., Foley, S. F., Jackson, S. E. et al., Experimentally determined partitioning of high field strength- and selected transition elements between spinel and basaltic melt, Chem. Geol., 1994, 117: 193–218.CrossRefGoogle Scholar
  42. 42.
    Liu, Y. S., Gao, S., Luo, T. C., High-field-strength elements in mafic volcanics from North China craton: Implications for Archean-Proterozoic boundary and source composition, Earth Science-J. China Uni. Geosci., 1998, 9(2): 109–115.Google Scholar
  43. 43.
    Foley, S. F., Barth, M. G., Jenner, G. A., Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas, Geochim. Cosmochim. Acta, 2000, 64: 933–938.CrossRefGoogle Scholar
  44. 44.
    Gregoire, M., Moine, B. N., O'Reilly, S. Y. et al., Trace element residence and partitioning in mantle xenoliths metasomatized by highly alkaline, silicate- and carbonate-rich melts (Kerguelen Islands, Indian Ocean), J. Petrol., 2000, 41: 477–509.CrossRefGoogle Scholar
  45. 45.
    Sajona, F. G., Maury, R. C., Bellon, H. et al., Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines, Geology, 1993, 21: 1007–1010.CrossRefGoogle Scholar
  46. 46.
    Defant, M. J., Kepezhinskas, P., Evidence suggests slab melting in are magmas, EOS, 2001, 82(6): 65–69.CrossRefGoogle Scholar
  47. 47.
    Ionov, D. A., Hofmann, A. W., Nb-Ta-rich amphiboles and micas: implications for subduction-related metasomatic trace element fractionations, Earth Planet. Sci. Lett., 1995, 131: 341–356.CrossRefGoogle Scholar
  48. 48.
    Tiepolo, M., Bottazzi, P., Foley, S. et al., Fractionation of Nb and Ta from Zr and Hf at mantle depth: The role of titanian pargasite and kaersutite, J. Petrol., 2001, 42: 221–232.CrossRefGoogle Scholar
  49. 49.
    Foley, S., Tiepolo, M., Vannucci, R., Growth of early continental crust controlled by melting of amphibolite in subduction zones, Nature, 2002, 417: 837–840.CrossRefGoogle Scholar
  50. 50.
    Polat, A., Hofmann, A. W., Münker, C. et al., Contrasting geochemical patterns in the 3.7-3.8 Ga pillow basalt cores and rims, Isua greenstone belt, Southwest Greenland: Implications for postmagmatic alteration processes, Geochim. Cosmochim. Acta, 2003, 67: 441–457.CrossRefGoogle Scholar
  51. 51.
    Green, M. G., Sylvester, P. J., Buick, R., Growth and recycling of early Archaean continental crust: geochemical evidence from the Coonterunah and Warrawoona Groups, Pilbara Craton, Australia, Tectonophysics, 2000, 322: 69–88.Google Scholar
  52. 52.
    Jahn, B. M., Gruau, G., Capdevila, R. et al., Archean crustal evolution of the Aldan Shield, Siberia: Geochemical and isotopic conconstraints, Precam. Res., 1998, 91: 333–363.CrossRefGoogle Scholar
  53. 53.
    Hollings, P., Wyman, D., Trace element and Sm-Nd systematics of volcanic and intrusive rocks from the 3 Ga Lumby Lake Greenstone belt, Superior Province: Evidence for Archean plume-arc interaction, Lithos, 1999, 46: 189–213.CrossRefGoogle Scholar
  54. 54.
    Puchtel, I. S., Hofmann, A. W., Amelin, Y. V. et al., Combined mantle plume-island arc model for the formation of the 2.9 Ga Sumozero-Kenozero greenstone belt, SE Baltic Shield: Isotope and trace element constraints, Geochim. Cosmochim. Acta, 1999, 63: 3579–595.CrossRefGoogle Scholar
  55. 55.
    Kerrich, R., Polat, A., Wyman, D. et al., Trace element systematics of Mg- to Fe-tholeiitic basalt suites of the Superior Province: Implications for Archean mantle reservoirs and greenstone belt genesis, Lithos, 1999, 46: 163–187.CrossRefGoogle Scholar
  56. 56.
    Sage, R. P., Lightfoot, P. C., Doherty, W., Bimodal cyclical Archean basalts and rhyolites from the Michipicoten (Wawa) greenstone belt, Ontario: geochemical evidence for magma contributions from the asthenospheric mantle and ancient continental lithosphere near the southern margin of the Superior Province, Precam. Res., 1996, 6: 119–153.CrossRefGoogle Scholar
  57. 57.
    Hollings, P., Kerrich, R., An Archean arc basalt-Nb-enriched ba-salt-adakite association: The 2.7 Ga Confederation assemblage of the Birch-Uchi greenstone belt, Superior Province, Contrib Mineral Petrol, 2000, 139: 208–226.CrossRefGoogle Scholar
  58. 58.
    Polat, A., Kerrich, R., Magnesian andesites, Nb-enriched ba-salt-andesites, and adakites from late-Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: Implications for late Archean subduction zone petrogenetic processes, Contrib. Mineral. Petrol., 2001, 141: 36–52.Google Scholar
  59. 59.
    Polat, A., Kerrich, R., Wyman, D. A., Geochemical diversity in oceanic komatiites and basalts from the late Archean Wawa greenstone belts, Superior Province, Canada: Trace element and Nd isotope evidence for a heterogeneous mantle, Precam. Res., 1999, 94: 139–173.CrossRefGoogle Scholar
  60. 60.
    Wyman, D. A., A 2.7 Ga depleted tholeiite suite: Evidence of plume-arc interaction in the Abitibi Greenstone Belt, Canada, Precam. Res., 1999, 97: 27–42.CrossRefGoogle Scholar
  61. 61.
    Wyman, D. A., Ayer, J. A., Devaney, J. R., Niobium-enriched basalts from the Wabigoon subprovince, Canada: Evidence for adakitic metasomatism above an Archean subduction zone, Earth Planet. Sci. Lett., 2000, 179: 21–30.CrossRefGoogle Scholar
  62. 62.
    Cousens, B. L., Geochemistry of the Archean Kam Group, Yellowknife Greenstone Belt, Slave Province, Canada, J. Geol., 2000, 108: 181–197.CrossRefGoogle Scholar
  63. 63.
    Cousens, B., Facey, K., Falck, H., Geochemistry of the late Archean Banting Group, Yellowknife greenstone belt, Slave Province, Canada: Simultaneous melting of the upper mantle and juvenile mafic crust, Can. J. Earth Sci., 2002, 39: 1635–1656.CrossRefGoogle Scholar
  64. 64.
    Crow, C., Condie, K. C., Geochemistry and origin of early Proterozoic volcanic rocks from the Transvaal and Soutpansberg successions, South Africa, Precam. Res., 1990, 47: 17–26.Google Scholar
  65. 65.
    Reid, D. L., Welke, H. J., Erlank, A. J. et al., The Orange River Group: a major Proterozoic calcalkaline volcanic belt in the western Namaqua Province, South Africa, in Geochemistry and Mineralization of Proterozoic Volcanic Suites ((eds. Pharaoh, T. C., Beckinsale, R. D., Rickard, D.), Geol. Soc. Spec. Publ., 1987, 33: 327–346.Google Scholar
  66. 66.
    Arakawa, Y., Park, K.-H., Kim, N.-H. et al., Geochemistry and tectonic implications of Proterozoic amphibolites in the northeastern part of the Yeongnam massif, South Korea, The Island Arc, 2003, 12(2): 180–189.CrossRefGoogle Scholar
  67. 67.
    Bergström, U., Geochemistry and tectonic setting of volcanic units in the northern Västerbotten county, northern Sweden, in: Economic Geology Research ((ed. P. Weihed), Vol. 1, 1999–2000, Uppsala: Sveriges Geologiska Undersökning C833, 2001, 69–92.Google Scholar
  68. 68.
    Pharaoh, T. C., Pearce, J. A., Geochemical evidence for the geotectonic setting of early Proterozoic metavolcanic sequences in Lapland, Precam. Res., 1984, 25: 283–308.CrossRefGoogle Scholar
  69. 69.
    Zhang, C. L., Zhao, Y., Guo, K. Y. et al., Geochemistry characteristics of the Proterozoic Meta-basalt in Southern Tarim plate: Evidence for the Meso-Proterozoic Breakup of Paleo-Tarim Plate, Earth Science-J. China Uni. Geosci. (in Chinese with English Abstr.), 2003, 28(1): 47–53.Google Scholar
  70. 70.
    Marshall, L. P., Lidiak, E. G., Geochemistry and paleomagnetism of Keweenawan basalt in the subsurface of Nebraska, Precam. Res., 1996, 76: 47–65.CrossRefGoogle Scholar
  71. 71.
    Li, X. H., Zhou, H. W., Li, Z. X. et al., Petrogenesis of Neoproterozoic bimodal volcanics in western Sichuan and its tectonic implications: Geochemical and Sm-Nd isotopic constraints, Chinese J. Geology (in Chinese with English Abstr.), 2002, 37(3): 264–276.Google Scholar
  72. 72.
    Wolde, B., Asres, Z., Desta, Z. et al., Neoproterozoic zirconium-depleted boninite and tholeiitic series rocks from Adola, southern Ethiopia, Precam. Res., 1996, 80: 261–279.CrossRefGoogle Scholar
  73. 73.
    Pharaoh, T. C., Webb, P. C., Thorpe, R. S. et al., Geochemical evidence for the tectonic setting of late Proterozoic volcanic suites in central England, in Geochemistry and Mineralization of Proterozoic Volcanic Suites ((eds. Pharaoh, T. C., Beckinsale, R. D., Rickard, D.), Geol. Soc. Spec. Publ., 1987, 33: 541–552.Google Scholar
  74. 74.
    Klemenic, P. M., The geochemistry of Upper Proterozoic lavas from the Red Sea Hills, NE Sudan, in Geochemistry and Mineralization of Proterozoic Volcanic Suites ((eds. Pharaoh, T. C., Beckinsale, R. D., Rickard, D.), Geol. Soc. Spec. Publ., 1987, 33: 363–372.Google Scholar
  75. 75.
    Dostal, J., McCutcheon, S. R., Geochemistry of Late Proterozoic basaltic rocks from southeastern New Brunswick, Canada, Precam. Res., 1990, 47: 83–98.CrossRefGoogle Scholar
  76. 76.
    Smith, T. E., Holm, P. E., The trace element geochemistry of metavolcanics and dykes from the Central Metasedimentary belt of the Grenville Province, southern Ontario, Canada, in Geochemistry and Mineralization of Proterozoic Volcanic Suites ((eds. Pharaoh, T. C., Beckinsale, R. D., Rickard, D.), Geol. Soc. Spec. Publ., 1987,33: 453–470.Google Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  • Yongsheng Liu
    • 1
    • 2
  • Shan Gao
    • 1
    • 2
  • Xuance Wang
    • 1
  • Shenghong Hu
    • 1
  • Jianqi Wang
    • 2
  1. 1.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina
  2. 2.Key Laboratory of Continental DynamicsDepartment of Geology, Northwest UniversityXi’anChina

Personalised recommendations