Skip to main content
Log in

Identification and expression profiling of putative odorant-binding proteins in the malaria mosquitoes, Anopheles gambiae and A. arabiensis

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Olfaction plays a major role in host-seeking behaviour of mosquitoes. An informatics-based genome-wide analysis of odorant-binding protein (OBP) homologues is undertaken, and 32 putative OBP genes in total in the whole genome sequences of Anopheles gambiae are identified. Tissue-specific expression patterns of all A. gambiae OBP candidates are determined by semi-quantitative Reverse Transcription (RT)-PCR using mosquito actin gene as internal expression control standard. The results showed that 20 OBP candidates had strong expression in mosquito olfactory tissues (female antennae), which indicate that OBPs may play an important role in regulating mosquito olfactory behaviours. Species-specific expression patterns of all putative anopheline OBPs are also studied in two of the most important malaria vectors in A. gambiae complex, i.e. A. gambiae and A. arabiensis, which found 12 of the putative OBP genes examined displayed species-differential expression patterns. The cumulative relative expression intensity of the OBPs in A. arabiensis antennae was higher than that in A. gambiae (the ratio is 1441.45:1314.12), which might be due to their different host preference behaviour. While A. gambiae is a highly anthropophilic mosquito, A. arabiensis is more opportunistic (varying from anthropophilic to zoophilic). So the latter should need more OBPs to support its host selection preference. Identification of mosquito OBPs and verification of their tissue- and species-specific expression patterns represent the first step towards further molecular analysis of mosquito olfactory mechanism, such as recombinant expression and ligand identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Curtis, C. F., Introduction I: An overview of mosquito biology, behaviour and importance, in Olfaction in Mosquito-Host Interactions (eds. Bock, G. R., Cardew, G.), New York: Wiley, 1996, 3–7.

    Chapter  Google Scholar 

  2. Nighorn, A., Hildebrand, J. G., Dissecting the molecular mechanisms of olfaction in a malaria-vector mosquito, PNAS, 2002, 99(3): 1113–1114.[DOI]

    Article  PubMed  CAS  Google Scholar 

  3. Field, L. M., Pickett, J. A., Wadhams, L. J., Molecular studies in insect olfaction, Insect Mol. Biol., 2000, 9(6): 545–551. [DOI]

    Article  PubMed  CAS  Google Scholar 

  4. Krieger, J., Breer, H., Olfactory reception in invertebrates, Science, 1999, 286(5440): 720–723.[DOI]

    Article  PubMed  CAS  Google Scholar 

  5. Singh, R. N., Nayak, S. V., Fine structure and primary sensory projections of sensilla on the maxillary palp of Drosophila melanogaster Meigen (Diptera: Drosophilidae), Int. J. Insect Morphol. Embryol., 1985, 14: 291–306.

    Article  Google Scholar 

  6. Pelosi, P., Maida, R., Odorant-binding proteins in insects, Comp. Biochem. Physiol., 1995, 111B: 503–514.

    CAS  Google Scholar 

  7. Vogt, R. G., Callahan, F. E., Rogers, M. E. et al., Odorant binding protein diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris (Hemiptera, Heteroptera), Chem. Senses, 1999, 24(5): 481–495.[DOI]

    Article  PubMed  CAS  Google Scholar 

  8. Vogt, R. G., Riddiford, L. M., Pheromone binding and inactivation by moth antennae, Nature, 1981, 293: 161–163.

    Article  PubMed  CAS  Google Scholar 

  9. Vogt, R. G., Köhne, A. C., Dubnau, J. T. et al., Expression of pheromone binding proteins during antennal development in the gypsy moth Lymantria dispar, J. Neurosci., 1989, 9: 3332–3346.

    PubMed  CAS  Google Scholar 

  10. Breer, H., Boekhoff, I., Krieger, J. et al., Molecular mechanism of olfactory signal transduction, in Sensory Transduction (eds. Corey, D. P., Roper, S. D.), New York: The Rockefeller University Press, 1992, 94–108.

    Google Scholar 

  11. Vogt, R. G., Rybczynski, R., Cruz, M. et al., Ecdysteroid regulation of olfactory protein expression in the developing antenna of the tobacco hawk moth Manduca sexta, J. Neurobiol., 1993, 24: 581–597.

    Article  PubMed  CAS  Google Scholar 

  12. Pelosi, P., Odorant binding proteins, Crit. Rev. Biochem. Mol. Biol.T, T1994, 29: 199–228.

    Article  CAS  Google Scholar 

  13. Steinbrecht, R. A., Laue, M., Ziegelberger, G., Immunolocalization of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silk moths Antheraea and Bombyx, Cell Tissue Res., 1995, 282:203–217.[DOI]

    Article  CAS  Google Scholar 

  14. Robertson, H. M., Martos, R., Sears, C. R. et al., Diversity of odourant binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae, Insect Mol. Biol., 1999, 8(4): 501–518.[DOI]

    Article  PubMed  CAS  Google Scholar 

  15. Holt, R. A., Subramanian, G. M., Halpern, A. et al., The genome sequence of the malaria mosquito Anopheles gambiae, Science, 2002, Oct 4, 298(5591): 129–149.[DOI]

    Article  PubMed  CAS  Google Scholar 

  16. Takken, W., The role of olfaction in host-seeking of mosquitoes: A review, Insect Sci. Applic., 1991, 12: 287–295.

    Google Scholar 

  17. Bowen, M. F., Sensory aspects of host location in mosquitoes, Ciba Foundation Symposia, 1996, 200: 197–211.

    PubMed  CAS  Google Scholar 

  18. Takken, W., Synthesis and future challenges: The response of mosquitoes to host odours, Ciba Found Symp., 1996, 200: 302–312.

    PubMed  CAS  Google Scholar 

  19. Hunt, R. H., Coetzee, M., Fettene, M., The Anopheles gambiae complex: A new species from Ethiopia, Tran. R. Soc. Trop. Med. Hyg., 1998, 92: 231–235.[DOI]

    Article  CAS  Google Scholar 

  20. Coetzee, M., Craig, M., le Sueur, D., Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex, Parasitol Today, 2000, 16: 74–77.[DOI]

    Article  PubMed  CAS  Google Scholar 

  21. Onyabe, D. Y., Conn, J. E., Population genetic structure of the malaria mosquito Anopheles arabiensis across Nigeria suggests range expansion, Mol. Ecol., 2001, 10: 2577–2591.[DOI]

    Article  PubMed  CAS  Google Scholar 

  22. Ingrid, V. F. van den Broek, Cornelis, J. den Otter, Olfactory sensitivities of mosquitoes with different host preferences (Anopheles gambiae s.s., A. arabiensis, A. quadriannulatus, A. m. atroparvus) to synthetic host odours, J. Insect Physiol., 1999, 45: 1001–1010.[DOI]

    Article  Google Scholar 

  23. Prior, A., Torr, S. J., Host selection by A. arabiensis and A. quadriannulatus feeding on cattle in Zimbabwe, Med. Vet. Entomol., 2002, 16: 207–213.[DOI]

    Article  PubMed  CAS  Google Scholar 

  24. Pates, H. V., Akken, W. T., Curtis, C. F. et al., Unexpected anthropophilic behaviour in Anopheles quadriannulatus, Med. Vet. Entomol., 2001, 15: 293–298.[DOI]

    Article  PubMed  CAS  Google Scholar 

  25. White, G. B., Anopheles gambiae complex and disease transmission in Africa, Transactions of the Royal Society for Tropical Medicine and Hygiene, 1974, 68:278–298.

    Article  CAS  Google Scholar 

  26. Garrett-Jones, C., Boreham, P. F. L., Pant, C. P., Feeding habits of anophelines (Diptera: Culicidae) in 1971–78, with reference to the human blood index: A review, Bulletin of Entomological Research, 1980, 70:165–185.

    Article  Google Scholar 

  27. Gillies, M. T., Coetzee, M., A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical region), Publications of the South African Institute for Medical Research, 1987, 55: 1–143.

    Google Scholar 

  28. Macdonald, G., The Epidemiology and Control of Malaria, London: Oxford University Press, 1957.

    Google Scholar 

  29. Biessmann, H., Walter, M. F., Dimitratos, S. et al., Isolation of cDNA clones encoding putative odourant binding proteins from the antennae of the malaria-transmitting mosquito, Anopheles gambiae, Insect Mol. Biol., 2002, 11 (2): 123–132.[DOI]

    Article  PubMed  CAS  Google Scholar 

  30. James, A.A., Blackmer, K., Marinotti, O. et al., Isolation and characterization of the gene expressing the major salivary gland protein of the female mosquito, Aedes aegypti, Mol. Biochem. Parasitol., 1991, 44 (2): 245–253.[DOI]

    Article  PubMed  CAS  Google Scholar 

  31. Vogt, R. G., Odorant binding protein homologues of the malaria mosquito Anopheles gambiae; possible orthologues of the OS-E and OS-F OBPs of Drosophila melanogaster, J. Chem. Ecol., 2002, 28(11): 2371–2376.[DOI]

    Article  PubMed  CAS  Google Scholar 

  32. Fox, A. N., Pitts, R. J., Zwiebel, L. J., A cluster of candidate odorant receptors from the malaria vector mosquito, Anopheles gambiae, Chem. Senses, 2002, 27(5): 453–459.[DOI]

    Article  PubMed  CAS  Google Scholar 

  33. Xu, P. X., Zwiebel, L. J., Smith, D., Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae, Insect Mol. Biol., 2003, 12(6): 549–560.[DOI]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengxi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Zhou, JJ., Shen, Z. et al. Identification and expression profiling of putative odorant-binding proteins in the malaria mosquitoes, Anopheles gambiae and A. arabiensis . Sci. China Ser. C.-Life Sci. 47, 567–576 (2004). https://doi.org/10.1360/03yc0232

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1360/03yc0232

Keywords

Navigation