Science in China Series C: Life Sciences

, Volume 47, Issue 4, pp 303–312 | Cite as

Mitogen-activated protein kinases mediate the oxidative burst and saponin synthesis induced by chitosan in cell cultures of Panax ginseng

  • Hu Xiangyang
  • Steven J. Neill
  • Fang Jianying
  • Cai Weiming
  • Tang Zhangcheng
Article
  • 30 Downloads

Abstract

Chitosan (CHN) specially induced the activities of 39 kD and 42 kD protein kinases in ginseng cells, which could be suppressed by an inhibitor of mitogen-activated protein kinase (MAPK) pathway, PD98059. The immunoprecipitation (IP) using MAPK antibody or kinase assay in vitro also showed that CHN-induced 42 kD and 39 kD protein kinases belonged to the MAPK family. PD98059 suppressed CHN-induced transcriptions of ginseng squalene synthase and ginseng squalene epoxidase genes (gss and gse), CHN-induced accumulation of β-Amyrin synthase (β-AS) and synthesis of saponin. These results showed that CHN-induced activities of MAPKs were necessary for the CHN-induced saponin synthesis. EGTA and LaCl3 suppressed CHN-induced 39 kD and 42 kD MAPK activities. Ruthenium red (RR) could suppress CHN-induced 39 kD activity. All of them suppressed CHN-induced saponin synthesis. These results indicated that CHN-induced increment of cytosolic calcium was necessary for CHN-induced saponin synthesis. PD98059 also suppressed CHN-induced oxidative burst (including the increment of activity of plasma membrane NADPH oxidase and production of H2O2), but diphenylene iodonium (DPI), dimethylthiourea (DMTU) and 2,5-dihydroxycinnamic acid methyl ester (DHC) could not suppress CHN-induced MAPK activities, which indicated that MAPK was possibly function upstream of CHN-induced oxidative burst.

Keywords

mitogen-activated protein kinase chitosan saponin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jonak, C., Okresz, L., Bogre, L. et al., Complexity, cross talk and integration of plant MAP kinase signaling, Curr. Opin. Plant Biol., 2002, 5: 415–424.PubMedCrossRefGoogle Scholar
  2. 2.
    Garrington, T. P., Johnson, G. L., Organization and regulation of mitogen activated protein kinase signaling pathways, Curr. Opin. Cell Biol., 1999, 11: 211–218.PubMedCrossRefGoogle Scholar
  3. 3.
    Ichimura, K., Tena, G., Henry, Y. et al., Mitogen-activated protein kinase cascade in plants: A new nomenclature, Trends Plant Sci., 2002, 7: 301–308.CrossRefGoogle Scholar
  4. 4.
    Ptashne, M., Gann, A., Signal transduction. Imposing specificity on kinases, Science, 2003, 299: 1025–1027.PubMedCrossRefGoogle Scholar
  5. 5.
    Asai, T., Tena, G., Plotnikova, J. et al., MAP kinase signaling cascade in Arabidopsis immunity, Nature, 2002, 415: 977–983.PubMedCrossRefGoogle Scholar
  6. 6.
    Romeis, T., Piedrasa, P., Zhang, S. et al., Rapid Avr 9- and Cf-9-dependent activation of MAP kinases in tobacco cell cultures and leaves: Convergence of resistance gene, elicitor, wound, and salicylate responses, The Plant Cell, 1999, 11: 273–288.PubMedCrossRefGoogle Scholar
  7. 7.
    Stafstrom, J. P., Altaschuler, M., Anderson, D. H., Molecular cloning and expression of a MAP homologue from pea, Plant Mol. Biol., 1993, 22: 83–90.PubMedCrossRefGoogle Scholar
  8. 8.
    Liglerink, W., Kroj, T., Nieden, U. Z. et al., Receptor mediated activation of a MAP kinase in pathogen defense of plants, Science, 1997, 276: 2054–2057.CrossRefGoogle Scholar
  9. 9.
    Knetsch, M. L. W., Wang, M., Snaar-Jagalaka, B. et al., Abscisic acid induced mitogen-activated protein kinase activation in Barley aleurone protoplasts, The Plant Cell, 1996, 8: 1061–1067.PubMedCrossRefGoogle Scholar
  10. 10.
    Neill, S., Desikan, R., Clarke, A. et al., Hydrogen peroxide and nitric oxide as signaling molecules in plants, J. Exper. Bot., 2002, 372: 1237–1247.CrossRefGoogle Scholar
  11. 11.
    Neill, S., Desikan, R., Hancock, J., Hydrogen peroxide signaling, Curr. Opin. in Plant Biol., 2002, 5: 388–395.CrossRefGoogle Scholar
  12. 12.
    Grant, J. J., Loake, G. J., Role of reactive oxygen intermediates and cognate redox signaling in disease resistance, Plant Physiol., 2000, 124: 21–30.PubMedCrossRefGoogle Scholar
  13. 13.
    Lee, S., Choi, H., Suh, S. et al., Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis, Plant Physiol., 1999, 121: 147–152.PubMedCrossRefGoogle Scholar
  14. 14.
    Roller, S., Covill, N., The antifungal properties of chitosan in laboratory media and apple juice, Inter. J. Food Microbiol., 1999, 47: 67–77.CrossRefGoogle Scholar
  15. 15.
    Chang, M. M., Hadwiger, L. A., Horovitz, D., Molecular characterization of a pea beta-1,3-glucanase induced by Fusarium solani and chitosan challenge, Plant Mol. Biol., 1992, 20: 609–618.PubMedCrossRefGoogle Scholar
  16. 16.
    Wu, J. Y., Zhong, J. J., Production of ginseng and its bioactive components in plant cell culture: Current technological and applied aspects, J. Biotech., 1999, 68: 89–99.CrossRefGoogle Scholar
  17. 17.
    Osbourn, A. E., Wubben, J. P., Daniels, M. J., Saponin detoxification by phytopathogenic fungi, in Plant-microbe Interactions (eds. Stacey, G., Keen, N. T.), Vol. 2, New York: Chapman and Hall, 1997, 99–124.Google Scholar
  18. 18.
    Hu, X. Y., Neill, S. J., Fang, J. Y. et al., The mediation of defense responses of ginseng cells to an elicitor from cell walls of Colletotrichum lagerarium by plasma membrane NAD(P)H oxidases, Acta Botanica Sinica, 2003, 45: 32–39.Google Scholar
  19. 19.
    Hu, X. Y., Zhang, W. Q., Fang, J. Y. et al., Chitosan treatment raises the accumulation of saponin and the transcriptional level of genes encoding the key enzymes of saponin synthesis in cultured Panax ginseng cells, Journal of Plant Physiology and Molecular Biology, 2002, 28: 485–490.Google Scholar
  20. 20.
    Murphy, T. M., Huerta, J., Hydrogen peroxide formation in cultured rose cells in response to UV-C radiation, Physiol. Plant., 1990, 78: 247–253.CrossRefGoogle Scholar
  21. 21.
    Qiu, Q. S., Li, L., Liang, H. G. et al., Effect of water stress on the redox system of the plasma membrane of wheat roots, Acta Phytophysiol. Sinica, 1994, 20: 145–151.Google Scholar
  22. 22.
    Jiang, M., Zhang, J., Involvement of plasma-membrane NADPH oxidase in abscisic acidand water stress-induced antioxidant defense in leaves of maize seedlings, Planta, 2002, 215: 1022–1030.PubMedCrossRefGoogle Scholar
  23. 23.
    Desikan, R., Clarke, A., Atherfold, P. et al., Harpin induces mitogen-activated protein kinase activity during defense response in Arabidopsis thaliana suspension cells, Planta, 1999, 210: 93–103.CrossRefGoogle Scholar
  24. 24.
    Desikan, R., Hancock, J. T., Ichimura, K. et al., Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6, Plant Physiol., 2001, 126: 1579–1587.PubMedCrossRefGoogle Scholar
  25. 25.
    Maniatis, T., Fritsch, E. F., Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1982.Google Scholar
  26. 26.
    Zhong, J. J., Wang, S. J., Effects of nitrogen source on the production of ginseng saponin and polysaccharide by cell culture of Panax quinquefolium, Process Biochem., 1998, 33: 671–675.CrossRefGoogle Scholar
  27. 27.
    Cardinale, F., Jonak, C., Ligterink, W. et al., Differential activation of four specific MAPK pathways by distinct elicitors, J. Biol. Chem., 2000, 275: 36734–36740.PubMedCrossRefGoogle Scholar
  28. 28.
    Nühse, T. S., Peck, S. C., Hirt, H. et al., Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6, Biochem., 2000, 275: 7521–7526.Google Scholar
  29. 29.
    Lebrun-Garcia, A., Ouaked, F., Chiltz, A. et al., Activation of MAPK homologues by elicitors in tobacco cells, Plant J., 1998, 15: 773–781.PubMedCrossRefGoogle Scholar
  30. 30.
    Taylor, A. S., Kim, J., Low, P. S., Involvement of mitogen-activated protein kinase activation in the signal-transduction pathways of the soya bean oxidative burst, Biochem. J., 2001, 355: 795–803.PubMedGoogle Scholar
  31. 31.
    Kovtun, Y., Chiu, W., Guillaume, T. G. et al., Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants, Proc. Natl. Acad. Sci. USA, 2000, 97: 2940–2945.PubMedCrossRefGoogle Scholar
  32. 32.
    Kroj, T., Rudd, J. J., Nurnberger, T. et al., Mitogen-activated protein kinases play an essential role in oxidative burst-independent expression of pathogenesis-related genes in parsley, J. Biol. Chem., 2003, 278: 2256–2264.PubMedCrossRefGoogle Scholar
  33. 33.
    Ren, D., Yang, H., Zhang, S., Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis, J. Biol. Chem., 2002, 277: 559–565.PubMedCrossRefGoogle Scholar
  34. 34.
    Xing, X., Higgins, V. J., Blumwaid, E., Race-specific elicitors of Cladosporium fulvum promote translation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells, The Plant Cell, 1997, 9: 249–259.PubMedCrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  • Hu Xiangyang
    • 1
  • Steven J. Neill
    • 2
  • Fang Jianying
    • 1
  • Cai Weiming
    • 1
  • Tang Zhangcheng
    • 1
  1. 1.Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
  2. 2.Centre for Research in Plant ScienceUniversity of the West of EnglandBristolUK

Personalised recommendations