Advertisement

Science in China Series B: Chemistry

, Volume 46, Issue 1, pp 7–12 | Cite as

Photochemical properties of carotenoids: What can we get from the VB model?

  • Gao Yi
  • Chungen Liu
  • Yuansheng Jiang
Article
  • 34 Downloads

Abstract

The empirical valence bond model, solved by the DMRG technique, is applied to the systematical study of the photochemical processes of carotenoids. The polyenes with five up to one hundred of C=C bonds are investigated. The probability of the state arrangement for the conjugated bond, P ij is evaluated. It is a parameter to correlate the bond lengths, and could also be applied to rationalizing the quantum yields of the photo-isomerization and the reaction constant of the quenching of singlet-oxygen happened to the external C=C bond of the carotenoids. The maximum reaction constant in long chain limit is determined as about 2.92×1010 L · mol-1 ·s -1

Keywords

Pij singlet oxygen quenching cis- trans isomerization DMRG 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ESF Workshop “Light-Harvesting Physics”, Birštonas, Lithuania, September 1997; Special Issue of J. Phys. Chem. B, 1997, 101: 7197–7359.Google Scholar
  2. 2.
    Conn, P. F., Schalch, W., Truscott, T. G., The singlet oxygen and carotenoid interaction, J. Photochem. Photobiol. B, 1991, 11(1): 41–47.CrossRefGoogle Scholar
  3. 3.
    Edge, R., McGarvey, D. J., Truscott, T. G., The carotenoids as anti-oxidants —A review, J. Photochem. Photobiol. B, 1997,41(3): 189–200.CrossRefGoogle Scholar
  4. 4.
    Kuki, M., Koyama, Y., Nagae, H., Triplet-sensitized and thermal isomerization of all trans, 7-cis, 9-cis, 13-cis, and 15-cis isomers of β-carotene: Configurational dependence of the quantum yield of isomerization via the T1 state, J. Phys. Chem., 1991, 95(19): 7171–7180.CrossRefGoogle Scholar
  5. 5.
    Polivka, T., Zigmantas, D., Frank, H. A. et al., Near-infrared time-resolved study of the S-1 state dynamics of the carotenoid spheroidene, J. Phys. Chem. B, 2001, 105(5): 1072–1080.CrossRefGoogle Scholar
  6. 6.
    He, Z., Sundstrom, V., Pullerits, T., Excited states of carotenoid in LH2: An ab initio study, Chem. Phys. Lett., 334(1–3): 159–167.Google Scholar
  7. 7.
    Brink, M., Jonson, H., Ottosson, C. H., Triplet state Z/E-photoisomerizations of polyenes: a comparison of ab initio and density functional methods, J. Phys. Chem. A, 1998, 102(32): 6513–6524.CrossRefGoogle Scholar
  8. 8.
    Bernardi, F., Garavelli, M., Olivucci, M. et al., Trans→cis isomerization in long linear polyenes as β-carotene models: a comparative CAS-PT2 and DFT study, Mol. Phys., 1997, 92(3): 359–364.CrossRefGoogle Scholar
  9. 9.
    Takahashi, O., Watanabe, M., Kikuchi, O., The “triplet-excited region” in linear polyenes: Real or artifactual? J. Mol. Struct. (Theochem.), 1999, 469: 121–125.CrossRefGoogle Scholar
  10. 10.
    Li, S. H., Jiang, Y. S., Bond lengths, reactivities, and aromaticities of benzenoid hydrocarbons based on the valence-bond calculations, J. Am. Chem. Soc., 1995, 117(32): 8401–8406.CrossRefGoogle Scholar
  11. 11.
    Ma, J., Li, S. H., Jiang, Y. S., Effective valence bond model study on conjugated hydrocarbons containing four-membered rings, J. Phys. Chem., 1996, 100(37): 15068–15072.CrossRefGoogle Scholar
  12. 12.
    Miguel, B., Guihéry, N., Malrieu, J. P. et al., Study of infinite polyacetylene from a Heisenberg Hamiltonian: dimerization and lowest excitation energies, Chem. Phys. Lett., 1998, 294(1–3): 49–55.CrossRefGoogle Scholar
  13. 13.
    Shuai, Z., Brédas, J. L., Saxena, A. et al., Linear and nonlinear optical response of polyenes: A density matrix renormalization group method study, J. Chem. Phys., 1998, 109(6): 2549–2555.CrossRefGoogle Scholar
  14. 14.
    Boman, M., Bursill, R. J., Identification of excitons in conjugated polymers: A density-matrix renormalization-group study, Phys. Rev. B, 1998, 57(24): 15167–15176.CrossRefGoogle Scholar
  15. 15.
    White, S. R., Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett., 1992, 69(19): 2863–2866.CrossRefGoogle Scholar
  16. 16.
    White, S. R., Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B, 1993, 48(14): 10345–10356.CrossRefGoogle Scholar
  17. 17.
    Gao, Y., Liu C. G., Jiang, Y. S., The valence bond study for benzenoid hydrocarbons of medium to infinite sizes, J. Phys. Chem. A, 2002, 106(11): 2592–2597.CrossRefGoogle Scholar
  18. 18.
    Said, M., Mayneu, D., Malrieu, J. P. et al., A nonempirical Heisenberg Hamiltonian for the study of conjugated hydrocarbons—Ground-state conformational studies, J. Am. Chem. Soc., 1984, 106(3): 571–579.CrossRefGoogle Scholar
  19. 19.
    Streitweiser, A. Jr., Molecular Orbital Theory for Organic Chemists, New York: Wiley, 1961, 139.Google Scholar
  20. 20.
    Schettino, V., Gervasio, F. L., Cardini, G. et al., Density functional calculation of structure and vibrational spectra of polyenes, J. Chem. Phys., 1999, 110(6): 3241–3250.CrossRefGoogle Scholar
  21. 21.
    Garavelli, M., Bernardi, F., Olivucci, M. et al., DFT study of the reactions between singlet-oxygen and a carotenoid model, J. Am. Chem. Soc., 1998, 120(39): 10210–10222.CrossRefGoogle Scholar
  22. 22.
    Foote, C. S., Quenching of singlet oxygen, in Singlet Oxygen (eds. Wasserman, H. H., Murray, R. W.), New York: Academic Press, 1979, 139–171.Google Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  1. 1.Institute of Theoretical and Computational ChemistryInstitute of Mesoscopic ChemistryNanjingChina
  2. 2.Material, Department ofChemistryNanjing UniversityNanjingChina

Personalised recommendations