Science in China Series B: Chemistry

, Volume 47, Issue 2, pp 98–105 | Cite as

Structures and stability of isomers of [Si,N,N,P] system

  • Wei Kan
  • Haitao Yu
  • Mingxia Li
  • Honggang Fu
  • Jiazhong Sun


Some stationary points on the potential energy surface of [Si, N, N, P] system were located at the B3LYP/6-311G(d) and QCISD(t)/6-311+G(2df)(single-point) levels of theory, while the isomerization, structures, and stability of these obtained isomers were suggested. The computed results indicate that only four-membered ring isomer SiNPN(E1, 2A"), which possesses butterfly-like structure and Si-P cross bonding, is kinetically stable in all optimized isomers. Other isomers may be considered as kinetically unstable towards isomerization or dissociation because of the corresponding smaller reaction barriers. Furthermore, the present paper also proposes electronic and geometric structures, vibrational frequencies and the corresponding vibrational modes, dipole moments, and rotational constants of isomer E1. To make use of the computed results, we can clearly know that the reaction pathway via an intermediate E3 (SiNPN) is the most favorable channel producing isomer E1 from fragments SiN(2Π) and PN (1Σ), which have been well characterized in space, and thus, isomer E1 can be considered as a candidate for interstellar observation. The reaction enthalpy of SiN(2Π) + PN(1Σ)→ E1 and the standard enthalpy of formation of isomer E1 are 215.25 and 457.99 kJ/mol, respectively, at 298.15 K.


potential energy surface [Si,N,N,P] system isomerization kinetic stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McCarthy, M. C., Apponi, A. J., Thaddeus, P., Rhomboidal SiC3, J. Chem. Phys., 1999, 110: 10645–10648.CrossRefGoogle Scholar
  2. 2.
    Apponi, A. J., McCarthy, M. C., Gottlieb, C. A. et al., The rotational spectrum of rhomboidal SiC3, J. Chem. Phys., 1999, 111: 3911–3918.CrossRefGoogle Scholar
  3. 3.
    Turner, B. E., Bally, J., Detection of interstellar phosphorus nitride (PN): the first identified phosphorus compound in the interstellar, Astrophys. J., 1987, 321: L75-L79.CrossRefGoogle Scholar
  4. 4.
    Brouckère, G., Feller, D., Floch, A. C. L. et al., Towards a confirmation of theoretical predictions of selected spectroscopic constants for the D1Δ state of PN, J. Phys. B: At. Mol. Opt. Phys., 1996, 29: 6069–6074.CrossRefGoogle Scholar
  5. 5.
    Nielsen, I. M. Allen, W. D., Császár, A. G et al., Toward resolution of the silicon dicarbide (SiC2) saga: ab initio excursions in the web of polytopism, J. Chem. Phys., 1997,107: 1195–1211.CrossRefGoogle Scholar
  6. 6.
    Yu, H. T., Fu, H. G., Chi, Y. J. et al., Computational study on structures, isomerization, and dissociation of [Si,N,C,S]+ isomers, Chem. Phys. Lett., 2002, 359: 373–380.CrossRefGoogle Scholar
  7. 7.
    Yu, H. T., Ding, Y. H., Huang, X. R. et al., Computational study on structures, isomerization and dissociation of [Si,N,C,O] isomers, J. Mol. Struct. (THEOCHEM), 2001, 574: 47–55.CrossRefGoogle Scholar
  8. 8.
    Chi, Y. J., Yu, H. T., Fu, H. G. et al., Structures, relative stability and dissociation of [Si, N, C, O]2+ isomers, Science in China, Series 2002, 45(6): 561–569.CrossRefGoogle Scholar
  9. 9.
    Yu, H. T., Li, B., Chi, Y. J. et al., Theoretical study on the structures and stability of isomers and complex of [Si,C,O,O] system, Chinese J. Chem., 2003, 21: 121–125.Google Scholar
  10. 10.
    Fu, H. G., Yu, H. T., Chi, Y. J. et al., Theoretical study on the singlet potential energy surface of CHOP system, Chem. Phys. Lett, 2002, 361:62–70.CrossRefGoogle Scholar
  11. 11.
    Ding, Y H., Huang, X. R., Li, Z. S. et al., Theoretical study on potential-energy surface of C2N2, J. Chem. Phys., 1998, 108: 2024–2027.CrossRefGoogle Scholar
  12. 12.
    Gensheimer, P. D., Detection of HCCNC from IRC+10216, Astrophys. J., 1997, 479: L75-L81.CrossRefGoogle Scholar
  13. 13.
    Bell, M. B., Feldman, P. A., Travers, M. J. et al., Detection of HC11N in the cold dust cloud TMC-1, Astrophys. J., 1997, 483: L61-L64.CrossRefGoogle Scholar
  14. 14.
    Gordon, V. D., McCarthy, M. C., Apponi, A. J. et al., Laboratory detection of HC6N, a carbon chain with a triplet electronic ground state, Astrophys. J., 2000, 540: 286–291.CrossRefGoogle Scholar
  15. 15.
    Baboul, A. G., Schlegel, H. B., Structures and energetics of some silicon-phosphorus compounds: SiHmPHn SiHmPHnSiH0, and (SiH3)3P, An ab initio molecular orbital study, J. Am. Chem. Soc., 1996,118:8444–8451.CrossRefGoogle Scholar
  16. 16.
    Orenllas, F. R., Ueno, L. T., Iwata, S., Diazasiline (SiNN): is there a conflict between experiment and theory? J. Chem. Phys., 1997, 106: 151–157.CrossRefGoogle Scholar
  17. 17.
    Jungnickel, G., Frauenheim, T., Jackson, K. A., Structure and energetics of SinNm clusters: growth pathways in a heterogenous cluster system, J. Chem. Phys., 2000, 112: 1295–1305.CrossRefGoogle Scholar
  18. 18.
    Huang, X. R., Ding, Y H., Li, Z. S. et al., Theoretical study on structures and stability of Si2P2 isomers, J. Phys. Chem. A, 2000, 104:8765–8772.CrossRefGoogle Scholar
  19. 19.
    Ornellas, F. R., Iwata, S., Structures and energetics of new nitrogen and silicon molecules: an ab initio study of Si2N2, J. Phys. Chem., 1996, 100: 16155–16161.CrossRefGoogle Scholar
  20. 20.
    Kwon, O., Almond, P. M., Mckee, M. L. et al., Structures and reactions of P2N2: a hybrid of elemental N2 and P4? J. Phys. Chem. A, 2002, 106:6864–6870.CrossRefGoogle Scholar
  21. 21.
    Nguyen, M. T., Creve, S., Vanquickenborne, L. G., Properties of phosphorus compounds by density functional theory: CH3P species as a test case, J. Chem. Phys., 1996, 105: 1922–1932.CrossRefGoogle Scholar
  22. 22.
    Correia, A., Pichaud, B., Lhorte, A. et al., Platinum gettering in silicon by silicon phosphide precipitates, J. Appl. Phys., 1996, 79: 2145–2147.CrossRefGoogle Scholar
  23. 23.
    Goumri, A., Rocha, J. -D. R., Laakso, D. et al., Characterization of reaction pathways on the potential energy surfaces for H + SO2 and HS + O2, J. Phys. Chem. A, 1999, 103: 11328–11335.CrossRefGoogle Scholar
  24. 24.
    Yu, H. T., Chi, Y J., Fu, H. G et al., Structures and stabilities of HPS2 isomers, Science in China, Series B, 2002, 45(3): 282–288.Google Scholar
  25. 25.
    Gordon, M. S., The molecular structure of silylamine, Chem. Phys. Lett, 1986, 126:451–454.CrossRefGoogle Scholar
  26. 26.
    Varma, R., Ramaprasad, K. R., Nelson, J. F., Microwave spectrum, barrier to hindered internal rotation, molecular structure, and electric dipole moment of silyl phosphine, J. Chem. Phys., 1975, 63: 915–918.CrossRefGoogle Scholar
  27. 27.
    Melius, C. F., Ho, P., Theoretical study of the thermochemistry of molecules in the silicon-nitrogen-hydrogen-fluorine system, J. Phys. Chem., 1991, 95: 1410–1419.CrossRefGoogle Scholar
  28. 28.
    Gingerich, K. A., Gaseous phosphorus compounds, III. Mass spectrometric study of the reaction between diatomic nitrogen and phosphorus vapor and dissociation energy of phosphorus mononitride and diatomic phosphorus, J. Phys. Chem., 1969, 73: 2734–2741.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  • Wei Kan
    • 1
  • Haitao Yu
    • 1
  • Mingxia Li
    • 1
  • Honggang Fu
    • 1
    • 2
  • Jiazhong Sun
    • 1
    • 2
  1. 1.College of Chemistry and Chemical EngineeringHeilongjiang UniversityHarbinChina
  2. 2.State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical ChemistryJilin UniversityChangchunChina

Personalised recommendations