Advertisement

Chinese Science Bulletin

, Volume 48, Issue 21, pp 2386–2390 | Cite as

A novel theoretical model for mass transfer of hollow fiber hemodialyzers

  • Weiping Ding
  • Liqun He
  • Gang Zhao
  • Zhiquan Shu
  • Shuxia Cheng
  • Dayong Gao
Reports

Abstract

A novel theoretical model for mass transfer of hollow fiber bundles in hemodialyzers is presented. In the model, a hemodialyzer is considered as a porous zone which is composed of two non-interpenetrating porous flow zones. Firstly, the dialysate side (shell side) is thought as a porous medium zone. Then by solidifying the dialysate flow zone and the occupied zone by hollow fiber membrane, the rest zone of hemodialyzer (i.e. blood side or lumen side) is considered as a porous medium zone too. Finally, the interface of the two flow zones is the fiber membrane through which mass transfer is performed. The dialysate and blood flows are all described by Navier-Stokes equations with Darcy momentum source terms. Kedem-Katchalsky equations as other source terms are added into Navier-Stokes equations to simulate the permeating flux through the membrane. All equations must be coupled together in the process of computing. The model is validated by the experimental data in literature. The simulative results show that the predicted clearances agree well with the experimental data, and the model in this paper is better than other models for the forecast of clearance.

Keywords

porous media mass transfer hollow fiber clearance hemodialyzer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sun Junfen, Wang Qingrui, Research of membrane in application to new artificial organs, Synthetic Fiber in China, 2002, 31(3): 18–21.Google Scholar
  2. 2.
    Zhang Guoliang, Zhang Gang, Zhang Fengbao et al., Study on mass transfer characteristics of combined hemodialysis-hemoperfusion system, Chinese Journal of Biomedical Engineering, 2001, 20(5): 467–472.Google Scholar
  3. 3.
    Chang, Y. L., Lee, C. J., Solute transport characteristics in hemodiafiltration, J. Membr. Sci., 1988, 39: 99–111.CrossRefGoogle Scholar
  4. 4.
    Jaffrin, M., Ding, L., Laurent, J., Simultaneous convective and diffusive mass transfers in a hemodialyzer, J. Biomech. Eng., 1990, 112: 212–219.CrossRefGoogle Scholar
  5. 5.
    Wüpper, A., Woermann, D., Dellanna, F. et al., Retrofilration rates in high-flux fiber hemodialyzers: Analysis of clinical data, J. Membr, Sci., 1996, 121: 109–116.CrossRefGoogle Scholar
  6. 6.
    Wüpper, A., Dellanna, F., Baldamus, C. A. et al., Local transport processes in high-flux hollow fiber dialyzers, J. Membr. Sci., 1997, 131: 181–193.CrossRefGoogle Scholar
  7. 7.
    Legallais, C., Catapano, G., Harten, B. et al., A theoretical model to predict the in vitro performance of hemodialfilters, J. Membr. Sci., 2000, 168: 3–15.CrossRefGoogle Scholar
  8. 8.
    Gostoli, C., Gatta, A., Mass transfer in a hollow fiber dialyzer, J. Membr. Sci., 1980, 6: 133–148.CrossRefGoogle Scholar
  9. 9.
    Chen, V., Hlavacek, M., Application of Voronoi tessellation for modeling randomly packed hollow-fiber bundles, AIChE J., 1994, 40: 606–612.CrossRefGoogle Scholar
  10. 10.
    Rogers, J. D., Long, R. L., Modeling hollow fiber membrane contactors using film theory, Voronoi tessellations, and facilitation factors for systems with interface reactions, J. Membr. Sci., 1997, 134: 1–17.CrossRefGoogle Scholar
  11. 11.
    Bao, L., Liu, B., Lipscomb, G., Entry mass transfer in axial flows through randomly packed fiber bundles, AIChE J., 1999, 45: 2346–2356.CrossRefGoogle Scholar
  12. 12.
    Lemanski, J., Lipscomb, G., Effect of shell-side flows on hollow-fiber membrane device performance, AIChE J., 1995, 41: 2322–2326.CrossRefGoogle Scholar
  13. 13.
    Liao, Z. J., Numerical and experimental studies of mass transfer in hemodialyzer and hemodialysis, Ph. D Dissertation, University of Kentucky, USA, 2002.Google Scholar
  14. 14.
    Jaffrin, M., Convective mass transfer in hemodialysis, Artif Organs, 1995, 19: 1162–1171.CrossRefGoogle Scholar
  15. 15.
    Sadiq, T. A. K., Advani, S. G., Parnas, R. S., Experimental investigation of transverse flow through aligned cylinders, Int. J. Multiphase Flow, 1995, 21: 755–774.CrossRefGoogle Scholar
  16. 16.
    Osuga, T., Obata, T., Ikehira, H. et al., Dialysate pressure isobars in a hollow-fiber dialyzer determined from magnetic resonance imaging and numerical simulation of dialysate flow, Artif Organs, 1998, 22: 907–909.CrossRefGoogle Scholar
  17. 17.
    Peter, D., Cakl, J., Permeate flow in hexagonal 19-channel inorganic membrane under filtration and backflush operating modes, J. Membr. Sci., 1998, 149: 171–179.CrossRefGoogle Scholar
  18. 18.
    Skartsis, L., Khomami, B., Kardos, J., Resin flow through fiber beds during composite manufacturing process, Poly Eng. Sci., 1992, 32: 221–239.CrossRefGoogle Scholar
  19. 19.
    Labecki, M., Bruce, D. B., James, M. P., Two-dimensional analysis of protein transport in the extracapillary space of hollow-fibre bioreactors, Chem. Eng. Sci., 1996, 51: 4197–4213.CrossRefGoogle Scholar
  20. 20.
    Lemanski, J., Lipscomb, G., Effect of shell-side flows on the performance of hollow-fiber gas separation modules, J. Membr. Sci., 2001, 195: 215–228.CrossRefGoogle Scholar
  21. 21.
    Kedem, O., Katchalsky, A., Thermodynamics analysis of the permeability of biological membranes to non-electrolytes, Biochim. Biophys. Acta, 1958, 27: 229–246.CrossRefGoogle Scholar
  22. 22.
    Wendt, R. P., Klein, E., Bresler, E. H. et al., Sieving properties of hemodialysis membranes, J. Membr. Sci., 1979, 5: 23–49.CrossRefGoogle Scholar
  23. 23.
    Zhang, J., Parker, D., Leypoldt, J. K., Flow distribution in hollow fiber hemodialysis using magnetic resonance Fourier velocity imaging, ASAIO J., 1995, 41: 678–682.CrossRefGoogle Scholar
  24. 24.
    Frank, A., Lipscomb, G., Dennis, M., Visualization of concentration fields in hemodialyzers by computed tomography, J. Membr. Sci., 2000, 175: 239–251.CrossRefGoogle Scholar
  25. 25.
    Patankar, S. V., Numerical Heat Transfer and Fluid Flow, New York: Hemisphere Publishing Co., 1980.Google Scholar
  26. 26.
    Sargent, J. A., Gotch, F. A., Principles and biophysics of dialysis, Replacement of renal function by dialysis (eds. Drukker, W., Parsons, F. M., Maher, J. F.), Martinus Nijhoff Medical Division, The Hague: 1978, 38–68.Google Scholar
  27. 27.
    Peter, A. H., Churn, K. P., Liao, Z. J. et al., The use of magnetic resonance imaging to measure the local ultrafiltration rate in hemodialyzers, J. Membr. Sci., 2002, 204: 195–205.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  • Weiping Ding
    • 1
  • Liqun He
    • 1
  • Gang Zhao
    • 1
  • Zhiquan Shu
    • 1
  • Shuxia Cheng
    • 1
  • Dayong Gao
    • 1
    • 2
  1. 1.Department of Thermal Science & Energy EngineeringUniversity of Science & Technology of ChinaHefeiChina
  2. 2.Department of Mechanical EngineeringUniversity of KentuckyLexingtonUSA

Personalised recommendations