Chinese Science Bulletin

, Volume 48, Issue 23, pp 2536–2548 | Cite as

Exploring cyclic changes of the ocean carbon reservoir

  • Pinxian Wang
  • Jun Tian
  • Xinrong Cheng
  • Quanlian Liu
  • Jian Xu
Articles
  • 48 Downloads

Abstract

A 5-Ma record from ODP Site 1143 has revealed the long-term cycles of 400–500 ka in the carbon isotope variations. The periodicity is correlatable all over the global ocean and hence indicative of low-frequency changes in the ocean carbon reservoir. As the same periodicity is also found in carbonate and eolian dust records in the tropical ocean, it may have been caused by such low-latitude processes like monsoon. According to the Quaternary records from Site 1143 and elsewhere, major ice-sheet expansion and major transition in glacial cyclicity (such as the Mid-Brunhes Event and the Mid-Pleistocene Revolution) were all preceded by reorganization in the ocean carbon reservoir expressed as an episode of carbon isotope maximum(δ13Cmax), implying the role of carbon cycling in modulating the glacial periodicity. The Quaternary glacial cycles, therefore, should no more be ascribed to the physical response to insolation changes at the Northern Hemisphere high latitudes alone; rather, they have been driven by the “double forcing”, a combination of processes at both high and low latitudes, and of processes in both physical (ice-sheet) and biogeochemical (carbon cycling) realms. As the Earth is now passing through a new carbon isotope maximum, it is of vital importance to understand the cyclic variations in the ocean carbon reservoir and its climate impact. The Pre-Quaternary variations in carbon and oxygen isotopes are characterized by their co-variations at the 400-ka eccentricity band, but the response of δ13C and δ18O to orbital forcing in the Quaternary became diverged with the growth of the Arctic ice-sheet. The present paper is the second summary report of ODP Leg 184 to the South China Sea.

Keywords

ODP Leg 184 South China Sea tropical forcing carbon cycling orbital periodicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, P., Zhao, Q., Jian, Z. et al., Thirty million year deep-sea records in the South China Sea, Chinese Science Bulletin, 2003, 48(23): 2524–2535CrossRefGoogle Scholar
  2. 2.
    Imbrie, J., Berger, A., Boyle, E. A. et al., On the structure and origin of major glaciation cycles, 2, the 100000-year cycle, Paleoceanography, 1993, 8: 699–735.CrossRefGoogle Scholar
  3. 3.
    Clement, A. C., Seager, R., Cane, M. A., Orbital controls on the El Niño/Southern Oscillation and the tropical climate, Paleoceanography, 1999, 14: 441–456.CrossRefGoogle Scholar
  4. 4.
    Petit, J. R., Jouzel, J., Raynaud, D. et al., Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 1999, 399: 429–436.Google Scholar
  5. 5.
    Shackleton, N. J., The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity, Science, 2000, 289: 1897–1902.CrossRefGoogle Scholar
  6. 6.
    Webster, P. J., The role of hydrological processes in ocean-atmosphere interactions, Rev Geophys., 1994, 32: 427–476.CrossRefGoogle Scholar
  7. 7.
    Kerr, R. A., The tropics return to the climate system, Science, 2001, 292: 660–661.CrossRefGoogle Scholar
  8. 8.
    Lea, D. W., Pak, D. K., Spero, H. J. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations, Science, 2000, 289: 1719–1724.CrossRefGoogle Scholar
  9. 9.
    Cane, M. A., Evans, M., Do the tropics rule? Science, 2000, 290: 1107–1008.CrossRefGoogle Scholar
  10. 10.
    Wang, P., Prell, W., Blum, P. et al., Proceedings of Ocean Drilling Program, Initial Reports, Volume 184, College Station: Ocean Drilling Program, 2000, 77.Google Scholar
  11. 11.
    Tian, J., Wang, P. Cheng, X. et al., Astronomically tuned Plio-Pleistocene benthic 18O record from South China Sea and Atlantic-Pacific comparison. Earth and Planetary Science Letters, 2002, 203: 1015–1029.CrossRefGoogle Scholar
  12. 12.
    Wang, P., Tian, J., Cheng, X., Transition of Quaternary glacial cyclicity in deep-sea records at Nansha, the South China Sea, Science in China, Ser. D, 2001, 44: 926–933.CrossRefGoogle Scholar
  13. 13.
    Wang, P., Tian, J., Cheng, X. et al., Carbon reservoir change preceded major ice-sheets expansion at Mid-Brunhes Event, Geology, 2003, 31: 239–242.CrossRefGoogle Scholar
  14. 14.
    Schmidt, H., Berger, W. H., Bickert, T. et al., Quaternary carbon isotope record of pelagic foraminifers: Site 806, Ontong Java Plateau (eds. Berger, W. H., Mayer, L. W. et al.), Proc. ODP Sci. Results, 1993, 130: 397–409.Google Scholar
  15. 15.
    Shackleton, N. J., Hall, M. A., Stable isotope history of the Pleistocene at ODP Site 677 (Becker, K., Sakai, H. et al.), Proc. ODP, Sci. Results, 1989, 111: 295–316.Google Scholar
  16. 16.
    Mix, A., Pisias, N. G., Rugh, W. et al., Benthic foraminifer stable isotope record from Site 849 (0–5 Ma): Local and global climate changes (eds. Pisias, N. G., Mayer L. A., Janecek, T. R. et al.), Proc. ODP Sci. Results, 1995, 138: 371–412.Google Scholar
  17. 17.
    Shackleton, N. J., Hall, M. A., Pate, D., Pliocene stable isotope stratigraphy of Site 846 (eds. Pisias, G., Mayer, L. A., Janecek. T. R. et al.), Proc. ODP Sci. Results, 1995, 138: 337–355.Google Scholar
  18. 18.
    Chen, J., Farrell, J. W., Murray, D. W. et al., Timescale and paleoceanographic implications of a 3.6 Ma oxygen isotope record from the northeast Indian Ocean (Ocean Drilling Program Site 758), Paleoceanography, 1995, 10: 21–47.CrossRefGoogle Scholar
  19. 19.
    Farrell, J. W., Janecek, T. R., Late Neogene paleoceanography and paleoclimatology of the northern Indian Ocean (Site 758) (eds. Weissel, J., Peirce, J., Taylor, E. et al.), Proc. OCP Sci. Results, 1991, 121: 297–355.Google Scholar
  20. 20.
    Raymo, M. E., Ruddiman, W. F., Backman, J. et al., Late Pliocene variation in Northern Hemisphere ice sheets and North Atlantic deep water circulation, Paleoceanography, 1989, 4: 413–446.CrossRefGoogle Scholar
  21. 21.
    Tiedemann, R., Sarnthein, M., Shackleton, N. J., Astronomic timescale for the Pliocene Atlantic 18O and dust flux records from Ocean Drilling Program Site 659, Paleoceanography, 1994, 9: 619–638.CrossRefGoogle Scholar
  22. 22.
    Bickert, T., Curry, W. B., Wefer, G. Late Pliocene to Holocene (2.6–0 Ma) western Equatorial Atlantic deep water circulation: Inferences from benthic stable isotopes (eds. Shackleton, N. J., Curry, W. B., Richter, C. et al.), Proc. ODP Sci. Results, 1997, 154: 239–253.Google Scholar
  23. 23.
    Jansen, J. F. H., Kuijpers, A., Troelstra, S. R., A Mid-Brunhes climatic event: Long term changes in global atmosphere and ocean circulation, Science, 1986, 232: 619–622.CrossRefGoogle Scholar
  24. 24.
    Berger, W. H., Bickert, T., Jansen, E. et al., The central mystery of the Quaternary Ice Age, Oceanus, 1993, 36: 53–56.Google Scholar
  25. 25.
    Droxler, A., Farrell, J. W., Marine isotope stage 11 (MIS 11):New insights for a warm future, Global and Planetary Change, 2000, 24: 1–5.CrossRefGoogle Scholar
  26. 26.
    Bassinot, F. C., Labeyrie, L. D., Vincent, E. et al., The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic Reversal, Earth and Planetary Science Letters, 1994, 126: 91–108.CrossRefGoogle Scholar
  27. 27.
    Rossignol-Strick, M., Paterne, M., Bassinot, F. C. et al., An unusual mid-Pleistocene monsoon period over Africa and Asia, Nature, 1998, 392: 269–272.CrossRefGoogle Scholar
  28. 28.
    Harris, S. E., Mix, A. C., King, T., Bogenic and terrigenous sedimentation at Ceara Rise, western tropical Atlantic, supports Pliocene-Pleistocene deep-water linkage between hemispheres (eds. Shackleton, N. J., Curry, W. B., Richter, C. et al.), Proc. ODP Sci. Results, 1997, 154: 331–345.Google Scholar
  29. 29.
    Guo, Z., Liu, T., Fedoroff, N. et al., Climate extremes in loess of China coupled with the strength of deep-water formation in the North Atlantic, Global and Planetary Change, 1998, 18: 113–128.CrossRefGoogle Scholar
  30. 30.
    Bassinot, F. C., Beaufort, L., Vincent, E. et al., Changes in the dynamics of Western equatorial Atlantic surface currents and biogenic productivity at the “Mid-Pleisotcene Revolution” (-930 ka) (eds. Shackleton, N. J., Curry, W. B., Richter, C. et al.), Proc. ODP Sci. Results, 1997, 154: 269–284.Google Scholar
  31. 31.
    Rutherford, S., D’Hondt, S., Early onset and tropical forcing of 100,000-year Pleistocene glacial cycles, Nature, 2000, 408: 72–75.CrossRefGoogle Scholar
  32. 32.
    Venz, K. A., Hodell, D. A., New evidence for changes in Plio-Pleistocene deep water circulation from Southern Ocean ODP Leg 177 Site 1090, Palaeo., Palaeo., Palaeo., 2002, 182: 197–220.Google Scholar
  33. 33.
    Moore, T. C. Jr., Pisias, N. G., Dunn, D. A., Carbonate time series of the Quaternary and Late Miocene sediments in the Pacific Ocean: A spectral comparison, Marine Geology, 1982, 46: 217–233.CrossRefGoogle Scholar
  34. 34.
    Droxler, A. W., Haddad, G. A., Mucciarone, D. A. et al., Pliocene-Pleistocene aragonite cyclic variations in Holes 714A and 716B (the Maldives) compared with Hole 633A (the Bahamas): Records of climate-induced CaCO3 preservation at intermediate water depth (eds. Duncan, R. A., Backamn, J., Peterson, L. C. et al.), Proc. ODP Sci. Results, 1990, 115:539–577.Google Scholar
  35. 35.
    Bassinot, F. C., Beaufort, L., Vincent, E. et al., Coarse fraction fluctuatiuons in pelagic carbonate sediments from the tropical Indian Ocean: A 1500-kyr record of carbonate dissolution, Paleoceanography, 1994, 9: 579–600.CrossRefGoogle Scholar
  36. 36.
    Schmieder, F., von Dobeneck, T., Bleil, U., The Mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: initiation, interimstate and terminal event, Earth and Planetary Science Letters, 2000, 179: 539–549.CrossRefGoogle Scholar
  37. 37.
    Paul, H. A., Zachos, J. C., Flower, B. P. et al., Orbitally induced climate and geochemical variability across the Oligocene/ Miocene boundary. Paleoceanography, 2000, 15(5): 471–485.CrossRefGoogle Scholar
  38. 38.
    Zachos, J. S., Shackleton, N. J., Revenaugh, J. S. et al., Flower BP. Climate response to orbital forcing across the Oligocene-Miocene boundary, Science, 2001, 292: 274–278.CrossRefGoogle Scholar
  39. 39.
    Woodruff, F., Savin, S. M., Mid-Miocene isotope stratigraphy in the deep sea: High-resolution correlations, paleoclimatic cycles, and sediment preservation, Paleoceanography, 1991, 6: 755–806.CrossRefGoogle Scholar
  40. 40.
    Ruddiman, W. F., Earth’s Climate: Past and Future, New York: Freeman W H & Co, 2001, 465.Google Scholar
  41. 41.
    Williams, M., Dunkerley, D., De Deckker, P. et al., Quaternary Environments, 2nd edition, London: Arnold, 1998, 329.Google Scholar
  42. 42.
    Mclntyre, A., Molfino, B., Forcing of Atlantic equatorial and subpolar millennial cycles by precession, Science, 1996, 274: 1867–1870.CrossRefGoogle Scholar
  43. 43.
    Berger, A., Loutre, M. F., Intertropical latitudes and precessional and half-precessional cycles, Science, 1997, 278: 1476–1478.CrossRefGoogle Scholar
  44. 44.
    Short, D. A., Mengel, J. G., Crowley, T. J. et al., Filtering of Milankovitch cycles by Earth’s geography, Quaternary Research, 1991, 35: 157–173.CrossRefGoogle Scholar
  45. 45.
    Olsen, P. E., Kent, D. V., Milankovitch climate forcing in the tropics of Pangaea during the Late Triassic, Palaeo., Palaleo.,Palaeo., 1996, 122: 1–26.CrossRefGoogle Scholar
  46. 46.
    Fenner, J., The Kirchrode I and II boreholes: technical details and evidence on tectonics, and the palaeoceanographic development during the Albian, Palaeo., Palaeo., Palaeo., 2001, 174: 33–65.Google Scholar
  47. 47.
    Pälike, H., Shackleton, N. J., Röhl, U., Astronomical forcing in Late Eocene marine sediments, Earth and Planetary Science Letters, 2001, 193: 589–602.CrossRefGoogle Scholar
  48. 48.
    Zachos, J. S., Pagani, M., Sloan, L. et al., Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 2001, 292: 686–693.CrossRefGoogle Scholar
  49. 49.
    Hilgen, F. J., Extension of the astronomically calibrated (polarity) time scale to the Miocene/Pliocene boundary, Earth and Planetary Science Letters, 1991, 107: 349–368.CrossRefGoogle Scholar
  50. 50.
    Matthews, R. K., Frohlich, C., Maximum flooding surfaces and sequence boundaries: Comparisons between observations and orbital forcing in the Cretaceaous and Jurassic (65–190 Ma), GeoArabia, Middle East Petroleum Geoscientists, 2002, 7: 503–538.Google Scholar
  51. 51.
    Harrison, K. G., Role of increased marine silica input on paleo-pCO2 levels, Paleoceanography, 2000, 15: 292–298.CrossRefGoogle Scholar
  52. 52.
    Archer, D., Winguth, A., Lea, D. et al., What caused the glacial/interglacial atmospheric pCO2 cycles? Reviews of Geophysics, 1995, 38: 159–189.CrossRefGoogle Scholar
  53. 53.
    Archer, D., Maier-Reimer, E., Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration, Nature, 1994, 367: 260–263.CrossRefGoogle Scholar
  54. 54.
    Treguer, P., Pondaven, P., Silica control of carbon dioxide, Nature, 2000, 406: 358–359.CrossRefGoogle Scholar
  55. 55.
    Tréguer, P., Nelson, D. M., Van Bennekom, A. J. et al., The silica balance in the world ocean: Areestimate, Science, 1995, 268: 375–379.CrossRefGoogle Scholar
  56. 56.
    Keigwin, L. D., Boyle, E. A., Carbon isotopes in deep-sea benthic foraminifera: Precession and changes in low-latitude biomass, Geophys. Monogr. Ser., 1985, 32: 319–328.Google Scholar
  57. 57.
    Crowley, T., Ice age terrestrial carbon changes revisited, Global Biogeochemical Cycle, 1995, 9: 377–389.CrossRefGoogle Scholar
  58. 58.
    Wehausen, R., Brumsack, H. J., Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments, Earth and Planetary Science Letters, 2002, 201: 621–636.CrossRefGoogle Scholar
  59. 59.
    Liu, C., Cheng, X., Exploring variations in upper ocean structure for the last 2 Ma of the Nansha area by means of calcareous nannofossil, Science in China, Ser. D, 2001, 44: 905–911.CrossRefGoogle Scholar
  60. 60.
    Sancetta, C., Villareal, T., Falkowski, P., Massive fluxes of rhizosolenid diatoms: A common occurrence? Limnology & Oceanography, 1991, 36: 1452–1457.CrossRefGoogle Scholar
  61. 61.
    Broecker, W. S., Clark, E., Lynch-Stieglitz, J. et al., Late glacial diatom accumulation at 9oS in the Indian Ocean, Paleoceanography, 2000, 15: 348–352.CrossRefGoogle Scholar
  62. 62.
    Kukla, G. J., Matthews, R. K., Mitchell, Jr. J. M., Guest Editorial: The end of the present interglacial, Quaternary Research, 1972, 2: 261–269.CrossRefGoogle Scholar
  63. 63.
    Berger, A., Loutre, M. F., An exceptionally long interglacial ahead? Science, 2002, 297: 1287–1288.CrossRefGoogle Scholar
  64. 64.
    Raymo, M. E., The timing of major climate terminations, Paleoceanography, 1997, 12: 577–585.CrossRefGoogle Scholar
  65. 65.
    Shi, Y. F., Liu, X., Li, B. et al., A very strong summer monsoon event during the 30–40 ka BP in the Qinfhai-Xizang (Tibet) Plateau and its relation to precessional cycle, Chinese Science Bulletin, 1999, 44: 1851–1857.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  • Pinxian Wang
    • 1
  • Jun Tian
    • 1
  • Xinrong Cheng
    • 1
  • Quanlian Liu
    • 1
  • Jian Xu
    • 1
  1. 1.Key Laboratory of Marine Geology, Ministry of EducationTongji UniversityShanghaiChina

Personalised recommendations