Skip to main content
Log in

Role of ran GTPase in cell cycle regulation

  • Review
  • Published:
Chinese Science Bulletin

Abstract

Ran, a member of the Ras GTPase superfamily, is a multifunctional protein and abundant in the nucleus. Many evidences suggest that Ran and its interacting proteins are involved in multiple aspects of the cell cycle regulation. So far it has been conformed that Ran and its interacting proteins control the nucleocytoplasmic transport, the nuclear envelope (NE) assembly, the DNA replication and the spindle assembly, although many details of the mechanisms are waiting for elucidation. It has also been implicated that Ran and its interacting proteins are involved in regulating the integrity of the nuclear structure, the mRNA transcription and splicing, and the RNA transport from the nucleus to the cytoplasm. In this review we mainly discuss the mechanisms by which Ran and its interacting proteins regulate NE assembly, DNA replication and spindle assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bischoff, F. R., Ponstingl, H., Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1, Nature, 1991, 354: 80–82.

    Article  PubMed  CAS  Google Scholar 

  2. Drivas, G. T., Shih, A., Coutavas, E. et al., Characterization of four novel Ras-like genes expressed in a human teratocarcinoma cell line, Mol. Cell Biol., 1990, 10: 1793–1798.

    PubMed  CAS  Google Scholar 

  3. Bischoff, F. R., Ponstingl, H., Mitotic regulator protein RCC1 is complexed with a nuclear Ras-related polypeptide, Proc. Natl. Acad. Sci. USA, 1991, 88: 10830–10834.

    Article  PubMed  CAS  Google Scholar 

  4. Clarke, P. R., Zhang, C., Ran GTPase: a master regulator of nuclear structure and function during the eukaryotic cell division cycle? Trends Cell Biol., 2001, 11: 366–371.

    Article  PubMed  CAS  Google Scholar 

  5. Moore, J. D., The Ran-GTPase and cell-cycle control, Bioessays, 2001, 23: 77–85.

    Article  PubMed  CAS  Google Scholar 

  6. Bischoff, F. R., Klebe, C., Kretschmer, J. et al., RanGAP1 induces GTPase activity of nuclear Ras-related Ran, Proc. Natl. Acad. Sci. USA, 1994, 91: 2587–2591.

    Article  PubMed  CAS  Google Scholar 

  7. Klebe, C., Bischoff, F. R., Ponstingl, H. et al., Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1m, Biochemistry, 1995, 34: 639–647.

    Article  PubMed  CAS  Google Scholar 

  8. Bischoff, F. R., Krebber, H., Smirnova, E. et al., Co-activation of Ran GTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1, Embo. J., 1995, 14: 705–715.

    PubMed  CAS  Google Scholar 

  9. Nicolas, F. J., Moore, W. J., Zhang, C. et al., XMog1, a nuclear ran-binding protein in Xenopus, is a functional homologue of Schizosaccharomyces pombe mog1p that co-operates with RanBP1 to control generation of Ran-GTP, J. Cell Sci., 2001, 114: 3013–3023.

    PubMed  CAS  Google Scholar 

  10. Aebi, M., Clark, M. W., Vijayraghavan, U. et al., A yeast mutant, PRP20, altered in mRNA metabolism and maintenance of the nuclear structure, is defective in a gene homologous to the human gene RCC1 which is involved in the control of chromosome condensation, Mol. Gen. Genet., 1990, 224: 72–80.

    Article  PubMed  CAS  Google Scholar 

  11. Butler, G., Wolfe, K. H., Yeast homologue of mammalian Ran binding protein 1, Biochim. Biophys. Acta, 1994, 1219: 711–712.

    PubMed  Google Scholar 

  12. Kalab, P., Weis, K., Heald, R., Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts, Science, 2002, 29: 2452–2456.

    Article  Google Scholar 

  13. Gant, T. M., Wilson, K. L., Nuclear assembly, Annu. Rev. Cell Dev. Biol., 1997, 13: 669–695.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang, C., Clarke, P. R., Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts, Science, 2000, 288: 1429–1432.

    Article  PubMed  CAS  Google Scholar 

  15. Hetzer, M., Bilbao-Cortes, D., Walther, T. C. et al., GTP hydrolysis by Ran is required for nuclear envelope assembly, Mol. Cell, 2000, 5: 1013–1024.

    Article  PubMed  CAS  Google Scholar 

  16. Vasu, S. K., Forbes, D. J., Nuclear pores and nuclear assembly, Curr. Opin. Cell Biol., 2001, 13: 363–375.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang, C., Hughes, M., Clarke, P. R., Ran-GTP stabilities microtubule asters and inhibits nuclear assembly in Xenopus egg extracts, J. Cell Sci., 1999, 112: 2453–2461.

    PubMed  CAS  Google Scholar 

  18. Zhang, C., Goldberg, M. W., Moore, W. J. et al., Concentration of Ran on chromatin induces decondensation, nuclear envelope formation and nuclear pore complex assembly, Eur. J. Cell Biol., 2002, 81: 623–633.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang, C., Clarke, P. R., Roles of Ran-GTP and Ran-GDP in precursor vesicle recruitment and fusion during nuclear envelope assembly in a human cell-free system, Curr. Biol., 2001, 11: 208–212.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang, C., Hutchins, J. R., Muhlhausser, P. et al., Role of importin-beta in the control of nuclear envelope assembly by Ran, Curr. Biol., 2002, 12: 498–502.

    Article  PubMed  CAS  Google Scholar 

  21. Askjaer, P., Galy, V., Hannak, E. et al., Ran GTPase cycle and importins alpha and beta are essential for spindle formation and nuclear envelope assembly in living Caenorhabditis elegans embryos, Mol. Biol. Cell, 2002, 13: 4355–4370.

    Article  PubMed  CAS  Google Scholar 

  22. Ren, M., Drivas, G., D’Eustachio, P. et al., Ran/TC4: a small nuclear GTP-binding protein that regulates DNA synthesis, J. Cell Biol., 1993, 120: 313–323.

    Article  PubMed  CAS  Google Scholar 

  23. Dasso, M., Seki, T., Azuma, Y. et al., A mutant form of the Ran/TC4 protein disrupts nuclear function in Xenopus laevis egg extracts by inhibiting the RCC1 protein, a regulator of chromosome condensation, Embo. J., 1994, 13: 5732–5744.

    PubMed  CAS  Google Scholar 

  24. Kornbluth, S., Dasso, M., Newport, J., Evidence for a dual role for TC4 protein in regulating nuclear structure and cell cycle progression, J. Cell Biol., 1994, 125: 705–719.

    Article  PubMed  CAS  Google Scholar 

  25. Hughes, M., Zhang, C., Avis, J. M. et al., The role of the Ran GTPase in nuclear assembly and DNA replication: characterisation of the effects of Ran mutants, J. Cell Sci., 1998, 111: 3017–3026.

    PubMed  CAS  Google Scholar 

  26. Nicolas, F. J., Zhang, C., Hughes, M. et al., Xenopus Ran-binding protein 1: molecular interactions and effects on nuclear assembly in Xenopus egg extracts, J. Cell Sci., 1997, 110: 3019–3030.

    PubMed  CAS  Google Scholar 

  27. Yamaguchi, R., Newport, J., A role for Ran-GTP and Crm1 in blocking re-replication, Cell, 2003, 113: 115–125.

    Article  PubMed  CAS  Google Scholar 

  28. Blow, J. J., Hodgson, B., Replication licensing-defining the proliferative state? Trends Cell Biol., 2002, 12: 72–78.

    Article  PubMed  CAS  Google Scholar 

  29. Thommes, P., Kubota, Y., Takisawa, H. et al., The RLF-M component of the replication licensing system forms complexes containing all six MCM/P1 polypeptides, Embo. J., 1997, 16: 3312–3319.

    Article  PubMed  CAS  Google Scholar 

  30. Carazo-Salas, R. E., Guarguaglini, G., Gruss, O. J. et al., Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation, Nature, 1999, 400: 178–181.

    Article  PubMed  CAS  Google Scholar 

  31. Kalab, P., Pu, R. T., Dasso, M., The Ran GTPase regulates mitotic spindle assembly, Curr. Biol., 1999, 9: 481–484.

    Article  PubMed  CAS  Google Scholar 

  32. Ohba, T., Nakamura, M., Nishitani, H. et al., Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran, Science, 1999, 284: 1356–1358.

    Article  PubMed  CAS  Google Scholar 

  33. Wilde, A., Zheng, Y., Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran, Science, 1999, 284: 1359–1362.

    Article  PubMed  CAS  Google Scholar 

  34. Wiese, C., Wilde, A., Moore, M. S. et al., Role of importin-beta in coupling Ran to downstream targets in microtubule assembly, Science, 2001, 291: 653–656.

    Article  PubMed  CAS  Google Scholar 

  35. Gruss, O. J., Carazo-Salas, R. E., Schatz, C. A. et al., Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity, Cell, 2001, 104: 83–93.

    Article  PubMed  CAS  Google Scholar 

  36. Nachury, M. V., Maresca, T. J., Salmon, W. C. et al., Importin beta is a mitotic target of the small GTPase Ran in spindle assembly, Cell, 2001, 104: 95–106.

    Article  PubMed  CAS  Google Scholar 

  37. Harborth, J., Wang, J., Gueth-Hallonet, C. et al., Self assembly of NuMA: multiarm oligomers as structural units of a nuclear lattice, The EMBO Journal, 1999, 18: 1689–1700.

    Article  PubMed  CAS  Google Scholar 

  38. Gaglio, T., Saredi, A., Compton, D., NuMA is required for the organization of microtubules into aster-like mitotic arrays, J. Cell Biol., 1995, 131: 693–708.

    Article  PubMed  CAS  Google Scholar 

  39. Haren, L., Merdes, A., Direct binding of NuMA to tubulin is mediated by a novel sequence motif in the tail domain that bundles and stabilizes microtubules, J. Cell Sci., 2002, 115: 1815–1824.

    PubMed  CAS  Google Scholar 

  40. Wittmann, T., Boleti, H., Antony, C. et al., Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein, J. Cell Biol., 1998, 143: 673–685.

    Article  PubMed  CAS  Google Scholar 

  41. Bamba, C., Bobinnec, Y., Fukuda, M. et al., The GTPase Ran regulates chromosome positioning and nuclear envelope assembly in vivo, Curr. Biol., 2002, 12: 503–507.

    Article  PubMed  CAS  Google Scholar 

  42. Keryer, G., Di Fiore, B., Celati, C. et al., Part of Ran is associated with AKAP450 at the centrosome: involvement in microtubule-organizing activity, Mol. Biol. Cell, 2003, 14: 4260–4271.

    Article  PubMed  CAS  Google Scholar 

  43. Di Fiore, B., Ciciarello, M., Mangiacasale, R. et al., Mammalian RanBP1 regulates centrosome cohesion during mitosis, J. Cell Sci., 2003, 116: 3399–3411.

    Article  PubMed  Google Scholar 

  44. Guarguaglini, G., Renzi, L., D’Ottavio, F. et al., Regulated Ran-binding protein 1 activity is required for organization and function of the mitotic spindle in mammalian cells in vivo, Cell Growth Differ., 2000, 11: 455–465.

    PubMed  CAS  Google Scholar 

  45. Kuersten, S., Ohno, M., Mattaj, I. W., Nucleo-cytoplasmic transport: Ran, beta and beyond, Trends Cell Biol., 2001, 11: 497–503.

    Article  PubMed  CAS  Google Scholar 

  46. Li, H. Y., Cao, K., Zheng, Y., Ran in the spindle checkpoint: a new function for a versatile GTPase, Trends Cell Biol., 2003, 13: 553–557.

    Article  PubMed  CAS  Google Scholar 

  47. Uchida, S., Sekiguchi, T., Nishitani, H. et al., Premature chromosome condensation is induced by a point mutation in the hamster RCC1 gene, Mol. Cell Biol., 1990, 10: 577–584.

    PubMed  CAS  Google Scholar 

  48. Brunet, S., Polanski, Z., Verlhac, M. H. et al., Bipolar meiotic spindle formation without chromatin, Curr. Biol., 1998, 8: 1231–1234.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanmao Zhang.

About this article

Cite this article

Jiang, Q., Lu, Z. & Zhang, C. Role of ran GTPase in cell cycle regulation. Chin.Sci.Bull. 49, 535–541 (2004). https://doi.org/10.1360/03wc0541

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1360/03wc0541

Keywords

Navigation