Advertisement

Chinese Science Bulletin

, Volume 49, Issue 6, pp 535–541 | Cite as

Role of ran GTPase in cell cycle regulation

  • Qing Jiang
  • Zhigang Lu
  • Chuanmao Zhang
Review
  • 60 Downloads

Abstract

Ran, a member of the Ras GTPase superfamily, is a multifunctional protein and abundant in the nucleus. Many evidences suggest that Ran and its interacting proteins are involved in multiple aspects of the cell cycle regulation. So far it has been conformed that Ran and its interacting proteins control the nucleocytoplasmic transport, the nuclear envelope (NE) assembly, the DNA replication and the spindle assembly, although many details of the mechanisms are waiting for elucidation. It has also been implicated that Ran and its interacting proteins are involved in regulating the integrity of the nuclear structure, the mRNA transcription and splicing, and the RNA transport from the nucleus to the cytoplasm. In this review we mainly discuss the mechanisms by which Ran and its interacting proteins regulate NE assembly, DNA replication and spindle assembly.

Keywords

Ran GTPase cell cycle DNA replication nuclear envelope assembly spindle assembly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bischoff, F. R., Ponstingl, H., Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1, Nature, 1991, 354: 80–82.PubMedCrossRefGoogle Scholar
  2. 2.
    Drivas, G. T., Shih, A., Coutavas, E. et al., Characterization of four novel Ras-like genes expressed in a human teratocarcinoma cell line, Mol. Cell Biol., 1990, 10: 1793–1798.PubMedGoogle Scholar
  3. 3.
    Bischoff, F. R., Ponstingl, H., Mitotic regulator protein RCC1 is complexed with a nuclear Ras-related polypeptide, Proc. Natl. Acad. Sci. USA, 1991, 88: 10830–10834.PubMedCrossRefGoogle Scholar
  4. 4.
    Clarke, P. R., Zhang, C., Ran GTPase: a master regulator of nuclear structure and function during the eukaryotic cell division cycle? Trends Cell Biol., 2001, 11: 366–371.PubMedCrossRefGoogle Scholar
  5. 5.
    Moore, J. D., The Ran-GTPase and cell-cycle control, Bioessays, 2001, 23: 77–85.PubMedCrossRefGoogle Scholar
  6. 6.
    Bischoff, F. R., Klebe, C., Kretschmer, J. et al., RanGAP1 induces GTPase activity of nuclear Ras-related Ran, Proc. Natl. Acad. Sci. USA, 1994, 91: 2587–2591.PubMedCrossRefGoogle Scholar
  7. 7.
    Klebe, C., Bischoff, F. R., Ponstingl, H. et al., Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1m, Biochemistry, 1995, 34: 639–647.PubMedCrossRefGoogle Scholar
  8. 8.
    Bischoff, F. R., Krebber, H., Smirnova, E. et al., Co-activation of Ran GTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1, Embo. J., 1995, 14: 705–715.PubMedGoogle Scholar
  9. 9.
    Nicolas, F. J., Moore, W. J., Zhang, C. et al., XMog1, a nuclear ran-binding protein in Xenopus, is a functional homologue of Schizosaccharomyces pombe mog1p that co-operates with RanBP1 to control generation of Ran-GTP, J. Cell Sci., 2001, 114: 3013–3023.PubMedGoogle Scholar
  10. 10.
    Aebi, M., Clark, M. W., Vijayraghavan, U. et al., A yeast mutant, PRP20, altered in mRNA metabolism and maintenance of the nuclear structure, is defective in a gene homologous to the human gene RCC1 which is involved in the control of chromosome condensation, Mol. Gen. Genet., 1990, 224: 72–80.PubMedCrossRefGoogle Scholar
  11. 11.
    Butler, G., Wolfe, K. H., Yeast homologue of mammalian Ran binding protein 1, Biochim. Biophys. Acta, 1994, 1219: 711–712.PubMedGoogle Scholar
  12. 12.
    Kalab, P., Weis, K., Heald, R., Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts, Science, 2002, 29: 2452–2456.CrossRefGoogle Scholar
  13. 13.
    Gant, T. M., Wilson, K. L., Nuclear assembly, Annu. Rev. Cell Dev. Biol., 1997, 13: 669–695.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang, C., Clarke, P. R., Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts, Science, 2000, 288: 1429–1432.PubMedCrossRefGoogle Scholar
  15. 15.
    Hetzer, M., Bilbao-Cortes, D., Walther, T. C. et al., GTP hydrolysis by Ran is required for nuclear envelope assembly, Mol. Cell, 2000, 5: 1013–1024.PubMedCrossRefGoogle Scholar
  16. 16.
    Vasu, S. K., Forbes, D. J., Nuclear pores and nuclear assembly, Curr. Opin. Cell Biol., 2001, 13: 363–375.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang, C., Hughes, M., Clarke, P. R., Ran-GTP stabilities microtubule asters and inhibits nuclear assembly in Xenopus egg extracts, J. Cell Sci., 1999, 112: 2453–2461.PubMedGoogle Scholar
  18. 18.
    Zhang, C., Goldberg, M. W., Moore, W. J. et al., Concentration of Ran on chromatin induces decondensation, nuclear envelope formation and nuclear pore complex assembly, Eur. J. Cell Biol., 2002, 81: 623–633.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang, C., Clarke, P. R., Roles of Ran-GTP and Ran-GDP in precursor vesicle recruitment and fusion during nuclear envelope assembly in a human cell-free system, Curr. Biol., 2001, 11: 208–212.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang, C., Hutchins, J. R., Muhlhausser, P. et al., Role of importin-beta in the control of nuclear envelope assembly by Ran, Curr. Biol., 2002, 12: 498–502.PubMedCrossRefGoogle Scholar
  21. 21.
    Askjaer, P., Galy, V., Hannak, E. et al., Ran GTPase cycle and importins alpha and beta are essential for spindle formation and nuclear envelope assembly in living Caenorhabditis elegans embryos, Mol. Biol. Cell, 2002, 13: 4355–4370.PubMedCrossRefGoogle Scholar
  22. 22.
    Ren, M., Drivas, G., D’Eustachio, P. et al., Ran/TC4: a small nuclear GTP-binding protein that regulates DNA synthesis, J. Cell Biol., 1993, 120: 313–323.PubMedCrossRefGoogle Scholar
  23. 23.
    Dasso, M., Seki, T., Azuma, Y. et al., A mutant form of the Ran/TC4 protein disrupts nuclear function in Xenopus laevis egg extracts by inhibiting the RCC1 protein, a regulator of chromosome condensation, Embo. J., 1994, 13: 5732–5744.PubMedGoogle Scholar
  24. 24.
    Kornbluth, S., Dasso, M., Newport, J., Evidence for a dual role for TC4 protein in regulating nuclear structure and cell cycle progression, J. Cell Biol., 1994, 125: 705–719.PubMedCrossRefGoogle Scholar
  25. 25.
    Hughes, M., Zhang, C., Avis, J. M. et al., The role of the Ran GTPase in nuclear assembly and DNA replication: characterisation of the effects of Ran mutants, J. Cell Sci., 1998, 111: 3017–3026.PubMedGoogle Scholar
  26. 26.
    Nicolas, F. J., Zhang, C., Hughes, M. et al., Xenopus Ran-binding protein 1: molecular interactions and effects on nuclear assembly in Xenopus egg extracts, J. Cell Sci., 1997, 110: 3019–3030.PubMedGoogle Scholar
  27. 27.
    Yamaguchi, R., Newport, J., A role for Ran-GTP and Crm1 in blocking re-replication, Cell, 2003, 113: 115–125.PubMedCrossRefGoogle Scholar
  28. 28.
    Blow, J. J., Hodgson, B., Replication licensing-defining the proliferative state? Trends Cell Biol., 2002, 12: 72–78.PubMedCrossRefGoogle Scholar
  29. 29.
    Thommes, P., Kubota, Y., Takisawa, H. et al., The RLF-M component of the replication licensing system forms complexes containing all six MCM/P1 polypeptides, Embo. J., 1997, 16: 3312–3319.PubMedCrossRefGoogle Scholar
  30. 30.
    Carazo-Salas, R. E., Guarguaglini, G., Gruss, O. J. et al., Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation, Nature, 1999, 400: 178–181.PubMedCrossRefGoogle Scholar
  31. 31.
    Kalab, P., Pu, R. T., Dasso, M., The Ran GTPase regulates mitotic spindle assembly, Curr. Biol., 1999, 9: 481–484.PubMedCrossRefGoogle Scholar
  32. 32.
    Ohba, T., Nakamura, M., Nishitani, H. et al., Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran, Science, 1999, 284: 1356–1358.PubMedCrossRefGoogle Scholar
  33. 33.
    Wilde, A., Zheng, Y., Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran, Science, 1999, 284: 1359–1362.PubMedCrossRefGoogle Scholar
  34. 34.
    Wiese, C., Wilde, A., Moore, M. S. et al., Role of importin-beta in coupling Ran to downstream targets in microtubule assembly, Science, 2001, 291: 653–656.PubMedCrossRefGoogle Scholar
  35. 35.
    Gruss, O. J., Carazo-Salas, R. E., Schatz, C. A. et al., Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity, Cell, 2001, 104: 83–93.PubMedCrossRefGoogle Scholar
  36. 36.
    Nachury, M. V., Maresca, T. J., Salmon, W. C. et al., Importin beta is a mitotic target of the small GTPase Ran in spindle assembly, Cell, 2001, 104: 95–106.PubMedCrossRefGoogle Scholar
  37. 37.
    Harborth, J., Wang, J., Gueth-Hallonet, C. et al., Self assembly of NuMA: multiarm oligomers as structural units of a nuclear lattice, The EMBO Journal, 1999, 18: 1689–1700.PubMedCrossRefGoogle Scholar
  38. 38.
    Gaglio, T., Saredi, A., Compton, D., NuMA is required for the organization of microtubules into aster-like mitotic arrays, J. Cell Biol., 1995, 131: 693–708.PubMedCrossRefGoogle Scholar
  39. 39.
    Haren, L., Merdes, A., Direct binding of NuMA to tubulin is mediated by a novel sequence motif in the tail domain that bundles and stabilizes microtubules, J. Cell Sci., 2002, 115: 1815–1824.PubMedGoogle Scholar
  40. 40.
    Wittmann, T., Boleti, H., Antony, C. et al., Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein, J. Cell Biol., 1998, 143: 673–685.PubMedCrossRefGoogle Scholar
  41. 41.
    Bamba, C., Bobinnec, Y., Fukuda, M. et al., The GTPase Ran regulates chromosome positioning and nuclear envelope assembly in vivo, Curr. Biol., 2002, 12: 503–507.PubMedCrossRefGoogle Scholar
  42. 42.
    Keryer, G., Di Fiore, B., Celati, C. et al., Part of Ran is associated with AKAP450 at the centrosome: involvement in microtubule-organizing activity, Mol. Biol. Cell, 2003, 14: 4260–4271.PubMedCrossRefGoogle Scholar
  43. 43.
    Di Fiore, B., Ciciarello, M., Mangiacasale, R. et al., Mammalian RanBP1 regulates centrosome cohesion during mitosis, J. Cell Sci., 2003, 116: 3399–3411.PubMedCrossRefGoogle Scholar
  44. 44.
    Guarguaglini, G., Renzi, L., D’Ottavio, F. et al., Regulated Ran-binding protein 1 activity is required for organization and function of the mitotic spindle in mammalian cells in vivo, Cell Growth Differ., 2000, 11: 455–465.PubMedGoogle Scholar
  45. 45.
    Kuersten, S., Ohno, M., Mattaj, I. W., Nucleo-cytoplasmic transport: Ran, beta and beyond, Trends Cell Biol., 2001, 11: 497–503.PubMedCrossRefGoogle Scholar
  46. 46.
    Li, H. Y., Cao, K., Zheng, Y., Ran in the spindle checkpoint: a new function for a versatile GTPase, Trends Cell Biol., 2003, 13: 553–557.PubMedCrossRefGoogle Scholar
  47. 47.
    Uchida, S., Sekiguchi, T., Nishitani, H. et al., Premature chromosome condensation is induced by a point mutation in the hamster RCC1 gene, Mol. Cell Biol., 1990, 10: 577–584.PubMedGoogle Scholar
  48. 48.
    Brunet, S., Polanski, Z., Verlhac, M. H. et al., Bipolar meiotic spindle formation without chromatin, Curr. Biol., 1998, 8: 1231–1234.PubMedCrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  1. 1.Department of Cell Biology and Genetics, National Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life SciencesPeking UniversityBeijingChina

Personalised recommendations