Chinese Science Bulletin

, 48:2458 | Cite as

Molecular characterization of OsPRP1 from rice, which is expressed preferentially in anthers

  • Xiaohuai Wu
  • Aijun Mao
  • Rong Wang
  • Tai Wang
  • Yanru Song
  • Zhe Tong


A proline-rich protein-encoding cDNA encoded by a rice gene, OsPRP1, was isolated by PCR-mediated RNA subtraction hybridization strategy and rapid amplification of cDNA ends. The deduced protein consists of 224 amino acids with the highest level of proline residue (14.29%). Following the putative signal peptide, OsPRP1 contains two structural domains, of which the N-terminal domain lacks Pro-rich repetitive sequences, and the C-terminal domain has two repetitive proline-rich sequences of 18 amino acid residues with PEPK motifs. Southern blot and sequence analysis show that OsPRP1 exists as four copies in rice genome and is localized in rice chromosome 10. RT-PCR experiments reveal that OsPRP1 is expressed preferentially in spikelets and buds with lower levels in roots and leaves. In situ hybridization indicates that OsPRP1 transcripts are present at high levels in pollen mother cells (PMCs), meiotic PMCs, tapetal cells and vascular bundle cells of flower organs. The expression of OsPRP1 in anthers has temporal specificity. The transcripts are accumulated at high levels in PMCs, at the highest levels in meiotic PMCs and at undetectable levels in uninucleate pollen. In buds the transcripts are only detected in the epidermal cells of coleoptiles and leaf primordial.


Oryza sativa RNA subtraction hybridization OsPRP1 PRP protein in situ hybridization 


  1. 1.
    Roberts, M. R., Foster, G. D., Blundell, R. P. et al., Gametophytic and sporophytic expression of anther-specific Arabidopsis thaliana gene, Plant I, 1993, 3: 111–120.CrossRefGoogle Scholar
  2. 2.
    Goldberg, R. B., Beals, T. P., Sanders, P. M., Anther development: basic principles and practical application, Plant Cell, 1993, 5: 1217–1229.CrossRefGoogle Scholar
  3. 3.
    Domon, C., Evard, J. L., Herdenberger, F. et al., Nucleotide sequence of two anther-specific cDNAs from sunflower (Helianthus annuus L.), Plant Mol. Biol., 1990, 15: 643–646.CrossRefGoogle Scholar
  4. 4.
    Koltunow, A. M., Truettner, J., Cox, K. H. et al., Different temporal and spatial gene expression patterns occur during anther development, Plant Cell, 1990, 2: 1201–1224.CrossRefGoogle Scholar
  5. 5.
    Nacken, W. K., Huijser, P., Saedler, H. et al., Molecular analysis of tap2, an anther-specific gene from Antirrhinum majus, FEBS Lett., 1991, 280: 155–158.CrossRefGoogle Scholar
  6. 6.
    Shen, J. B., Hsu, F. C., Brassica anther-specific genes: characterization and in situ localization of expression, Mol. Gen. Genet., 1992, 234: 379–389.CrossRefGoogle Scholar
  7. 7.
    Hird, D. L., Worral, D., Hodge, R. et al., The anther-specific protein encoded by the Brassica napus and Arabidopsis thaliana A6 gene displays similarity to beta-1, 3-glucanases, Plant J., 1993, 4: 1023–1033.CrossRefGoogle Scholar
  8. 8.
    Crossley, S. J., Greenland, A. J., Dickinson, H. G., The characterization of tapetum-specific cDNAs isolated from a Lilium henryi L. meiocyte subtractive cDNA library, Planta, 1995, 196: 523–529.CrossRefGoogle Scholar
  9. 9.
    Rubinelli, P., Hu, Y., Ma, H., Identification, sequence analysis and expression studies of novel anther-specific genes of Arabidopsis thaliana, Plant Mol. Biol., 1998, 37: 607–619.CrossRefGoogle Scholar
  10. 10.
    Hanson, D., Hamilton, D. A., Travis, J. L. et al., Characterization of a pollen-specific cDNA clone from Zea Mays and its expression, Plant Cell, 1989, 1: 173–179.CrossRefGoogle Scholar
  11. 11.
    Twell, D., Yamaguchi, J., McCormick, S., Pollen-specific gene expression in transgenic plants: coordinate regulation of two different tomato gene promoters during microsporgenesis, Development, 1990, 109: 705–713.Google Scholar
  12. 12.
    Kim, S. R., Kim, Y., An, G., Molecular cloning and characterization of anther-preferential cDNA encoding a putative actin depolymerizing factor, Plant Mol. Biol., 1993, 21: 39–45.CrossRefGoogle Scholar
  13. 13.
    Xu, H., Davies, S. P., Kwan, B. Y. et al., Haploid and diploid expression of a Brasica campestris anther-specific gene promoter in Arabidopsis and tobacco, Mol. Gen. Genet, 1993, 239: 58–65.Google Scholar
  14. 14.
    Stanchev, B. S., Doughty, J., Scutt, C. P. et al., Cloning of PCP1, a member of a family of pollen coat protein (PCP) genes from Brassica oleracea encoding novel cysteine-rich proteins involved in pollen-stigma interactions, Plant J., 1996, 10: 303–313.CrossRefGoogle Scholar
  15. 15.
    Matsunaga, S., Kawano, S., Takano, H. et al., Isolation and developmental expression of male reproductive organ-specific genes in a dioecious campion, Melandrium album (Silene latifolia), 1996, 10: 679–689.Google Scholar
  16. 16.
    Oldenhof, M. T., de Groot, P. F. M., Visser, J. H. et al., Isolation and characterization of microspore-specific gene from tobacco, Plant Mol. Biol., 1996, 31: 213–215.CrossRefGoogle Scholar
  17. 17.
    Ding, Z. J., Wang, T., Chong, K. et al., Isolation and characterization of OsDMC1, the rice homologue of the yeast DMC1 gene essential for meiosis, Sex Plant Reprod., 2001, 13: 285–288.CrossRefGoogle Scholar
  18. 18.
    Ding, Z. J., Wu, X. H., Wang, T., The rice tapetum-specific gene RA39 encodes a type I ribosome-inactivating protein, Sex Plant Reprod., 2002, 15: 205–212.CrossRefGoogle Scholar
  19. 19.
    Tsuchiya, T., Toriyama, K., Nasrallah, M. E. et al., Isolation of genes abundantly expressed in rice anthers at the microspore stage, Plant Mol. Biol., 1992, 20: 1189–1193.CrossRefGoogle Scholar
  20. 20.
    Tsuchiya, T., Toriyama, K., Ejiri, S. et al., Molecular characterization of rice genes specifically expressed in the anther tapetum, Plant Mol. Biol., 1994, 26: 1737–1746.CrossRefGoogle Scholar
  21. 21.
    Hihara, Y., Hara, C., Uchimiya, H., Isolation and characterization of two cDNA clones for mRNAs that are abundantly expressed in immature anthers of rice (Oryza sativa L.), Plant Mol. Biol., 1996, 30: 1181–1193.CrossRefGoogle Scholar
  22. 22.
    Jeon, J. S., Chung, Y. Y., Lee, S. et al., Isolation and characterization of an anther-specific gene, RA8, from rice (Oryza sativa L.), Plant Mol. Biol., 1999, 39: 35–44.CrossRefGoogle Scholar
  23. 23.
    Gale, M. D., Devos, K. M., Comparative genetics in the grasses, Proc. Natl. Acad. Sci. USA, 1998, 95: 1971–1974.CrossRefGoogle Scholar
  24. 24.
    Murray, M. G., Thompson, W. F., Rapid isolation of high molecular weight plant DNA, Nucleic Acids Res., 1980, 8: 4321–4325.CrossRefGoogle Scholar
  25. 25.
    Lisitsyn, N., Lisitsyn, N., Wigler, M., Cloning the difference between two complex genomics, Science, 1993, 259: 946–951.CrossRefGoogle Scholar
  26. 26.
    Straus, D., Ausubel, F. M., Genomic subtraction for cloning DNA corresponding to deletion mutations, Proc. Natl. Acad. Sci. USA, 1990, 87: 1889–1893.CrossRefGoogle Scholar
  27. 27.
    Foote, H. C. C., Brady, G., Thorlby, G. J. et al., Subtractive hybridization of different mRNA populations, in Plant Molecular Biology-A Laboratory manual (ed. Clark, M. S.), Berlin, Heidelberg, New York: Springer, 1997.Google Scholar
  28. 28.
    Frohman, M. A., Dush, M. K., Martin, G. R., Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer, Proc. Natl. Acad. Sci. USA, 1998, 85: 8998–9002.CrossRefGoogle Scholar
  29. 29.
    Meyerowitz, E. M., In Situ hybridization to RNA in plant tissues, Plant Mol. Biol. Rep., 1987, 5: 242–250.CrossRefGoogle Scholar
  30. 30.
    Brady, G., Iscove, N. N., Construction of cDNA libraries from single cells, Methods Enzymol., 1993, 225: 611–623.CrossRefGoogle Scholar
  31. 31.
    Showlter, A. M., Structure and function of plant cell wall proteins, Plant Cell, 1993, 5: 9–23.CrossRefGoogle Scholar
  32. 32.
    Fowler, T. J., Bernhardt, C. B., Tierney, M. L., Characterization and expression of four proline-rich cell wall proteins in Arabidopsis encoding two distinct subsets of multiple domain proteins, Plant Physiol., 1999, 121: 1081–1091.CrossRefGoogle Scholar
  33. 33.
    Hong, J. C., Nagao, R. T., Key, J. L., Characterization and sequence analysis of a developmentally regulated putative cell wall protein gene isolated from soybean, J. Biol. Chem., 1987, 262: 8367–8376.Google Scholar
  34. 34.
    Hong, J. C., Nagao, R. T., Key, J. L., Developmentally regulated expression of soybean proline-rich protein genes, Plant Cell, 1989, 1: 937–943.CrossRefGoogle Scholar
  35. 35.
    Sheng, J., D’Ovidio, R., Mehdy, M. C., Negative and positive regulation of a novel proline-rich protein mRNA by fungal elicitor and wounding, Plant J., 1991, 1: 345–354.CrossRefGoogle Scholar
  36. 36.
    Raines, C. A., Lioyd, J. C., Chao, S. et al., A novel proline-rich protein from wheat, Plant Mol. Biol., 1991, 16: 663–670.CrossRefGoogle Scholar
  37. 37.
    Vignols, F., Jose-Estanyol, M., Caparros-Ruiz, D. et al., Involvement of a maize proline-rich protein in secondary cell wall formation as deduced from its specific mRNA isolation, Plant Mol. Biol., 1999, 39: 945–952.CrossRefGoogle Scholar
  38. 38.
    Roberts, K., The plant extracellular matrix, Curr. Opin Cell Biol., 1989, 1: 1020–1027.CrossRefGoogle Scholar
  39. 39.
    Cheung, A. Y., May, B., Kawata, E. E. et al., Characterization of cDNAs for stylar transmitting tissue-specific proline-rich proteins in tabacoo, Plant J., 1993, 3: 151–160.CrossRefGoogle Scholar
  40. 40.
    Brisson, L. F., Tenhaken, R., Lamb, C., Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance, Plant Cell, 1994, 6: 1703–1712.CrossRefGoogle Scholar
  41. 41.
    Chen, J., Varner, J. E., Isolation and characterization of cDNA clones for carrot extension and proline-rich 33-Kda protein, Proc. Natl. Acad. Sci. USA, 1985, 82: 4399–4403.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  • Xiaohuai Wu
    • 1
  • Aijun Mao
    • 1
  • Rong Wang
    • 1
  • Tai Wang
    • 1
  • Yanru Song
    • 1
  • Zhe Tong
    • 1
  1. 1.Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of BotanyChinese Academy of SciencesBeijingChina

Personalised recommendations