Chinese Science Bulletin

, Volume 48, Issue 22, pp 2438–2443 | Cite as

Extraction of catechins and caffeine from different tealeaves and comparison with micellar electrokinetic chromatography

Reports
  • 106 Downloads

Abstract

This work describes the simultaneous determination of catechins and caffeine in green, black tealeaves and canned tea-drink using micellar electrokinetic chromatography. The catechins analyzed include (+)-catechin, (-)-epicatechin, (-)-epigallocatechin, (-)-epicatechin gallate and (-)-epigallocatechin gallate. Using UV absorption method at 280 nm, the limits of detections of catechins and caffeine are 10−6 mol/L, which is suitable for the real sample determination. Using this analytical method, the extraction of these compounds from the tealeaves with hot water is compared under different temperatures. The effects of temperature on the amount of catechins and caffeine extracted are evident, showing that (-)-epigallocatechin gallate is the most easiest to be extracted at 100°C. The stability of catechins and caffeine in stocking solution of tea-drink at 4°C is also compared on five consecutive days. The contents of catechins and caffeine in green and black teas are discussed and the difference of the content between different tealeaves can provide a reference for the assessment of tea quality.

Keywords

catechins caffeine tea micellar electrokinetic chroma-tography pretreatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jankun, J., Selman, S. H., Swiercz, R., Why drinking green tea could prevent cancer, Nature, 1997, 387(5): 561–563.CrossRefGoogle Scholar
  2. 2.
    Dalluge, J. J., Nelson, B. C., Determination of tea catechins, J. Chromatogr. A, 2000, 881(1–2): 411–424.CrossRefGoogle Scholar
  3. 3.
    Finger, A., Khur, S., Engelhardt, U. H., Chromatography of tea constituents, J. Chromatogr., 1992, 624: 293–315.CrossRefGoogle Scholar
  4. 4.
    Wang, Z. Y., Chang, S. J., Zhou, Z. C., Antimutagenic activity of green tea polyphenols, Mutat. Res., 1989, 223: 273–285.CrossRefGoogle Scholar
  5. 5.
    Vinson, J. A., Dabbagh, Y. A., Serry, M. M. et al., Plant flavonoids, especially tea flavonols, are powerful antioxidants using an in vitro oxidation model for heart disease, J. Agric. Food Chem., 1995, 43(11): 2800–2802.CrossRefGoogle Scholar
  6. 6.
    Lin, Y. L., Juan, I. M., Chen, Y. L. et al., Composition of polyphenols in fresh tea leaves and associations of their oxygen-radicalabsorbing capacity with antiproliferative actions in fibroblast cells, J. Agric. Food Chem., 1996, 44(6): 1387–1394.CrossRefGoogle Scholar
  7. 7.
    Zhao, B. L., The anti-oxidant activity of catechins, Chin. Sci. Bull. (in Chinese), 2002, 47(16): 1206–1210.Google Scholar
  8. 8.
    Fernández, P. L., Pablos, F., Martín, M. J. et al., Study of catechin and xanthine tea profiles as geographical tracers, J. Agric. Food Chem., 2002, 50(7): 1833–1839.CrossRefGoogle Scholar
  9. 9.
    Pierce, A. R., Graham, H. N., Glassner, S. et al., Analysis of tea flavanols by gas chromatography of their trimethylsilyl derivatives, Anal. Chem., 1969, 41(2): 298–302.CrossRefGoogle Scholar
  10. 10.
    Collier, P. D., Mallows, R., The estimation of flavanols in tea by gas chromatography of their trimethylsilyl derivatives, J. Chromatogr, 1971, 57: 29–45.CrossRefGoogle Scholar
  11. 11.
    Goto, T., Yoshida, Y., Kiso, M. et al., Simultaneous analysis of individual catechins and caffeine in green tea, J. Chromatogr. A, 1996, 749(1–2): 295–299.CrossRefGoogle Scholar
  12. 12.
    Maiani, G., Serafini, M., Salucci, M. et al., Applicaion of a new high-performance liquid Chromatographic method for measuring selected polyphenols in human plasma, J. Chromatagr. B, 1997, 692(2): 311–317.CrossRefGoogle Scholar
  13. 13.
    Wang, H. F., Provan, G. J., Helliwell, K., HPLC determination of catechins in tea leaves and tea extracts using relative response factors, Food Chemistry, 2003, 81(2): 307–312.CrossRefGoogle Scholar
  14. 14.
    Khokhar, S., Magnusdottir, S. G. M., Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom, J. Agric. Food Chem., 2002, 50(3): 565–570.CrossRefGoogle Scholar
  15. 15.
    Arce, L., Ríos, A., Valcárcel, M., Determination of anti-carcinogenic polyphenols present in green tea using capillary electrophoresis coupled to a flow injection system, J. Chromatogr. A, 1998, 827(1): 113–120.CrossRefGoogle Scholar
  16. 16.
    Li, Y., Gao, J. T., Zhang, Z. L. et al., Determination of catechins in grape seeds by capillary electrophoresis, Chinese Journal of Chromatography (in Chinese), 2000, 18(6): 491–494.Google Scholar
  17. 17.
    Barroso, M. B., Werken, G. V. D., Determination of green and black tea composition by capillary electrophoresis, J. High Resol. Chromatogr, 1999, 22(4): 225–230.CrossRefGoogle Scholar
  18. 18.
    Larger, P. J., Jones, A. D., Dacombe, C., Separation of tea polyphenols using micellar electrokinetic chromatography with diode array detection, J. Chromatogr. A, 1998, 799(1–2): 309–320.CrossRefGoogle Scholar
  19. 19.
    Horie, H., Kohata, K., Application of capillary electrophoresis to tea quality estimation, J. Chromatogr. A, 1998, 802(1): 219–223.CrossRefGoogle Scholar
  20. 20.
    Nelson, B. C., Thomas, J. B., Wise, S. A. et al., The separation of green tea catechins by micellar electrokinetic chromatography, J. Microcolumn separations, 1998, 10(8): 671–679.CrossRefGoogle Scholar
  21. 21.
    WÖrth, C. C. T., Wieβler, M., Schmitz, O. J., Analysis of catechins and cafeine in tea extracts by micellar electrokinetic chromatography, Electrophoresis, 2000, 21(17): 3634–3638.CrossRefGoogle Scholar
  22. 22.
    Watanabe, T., Nishiyama, R., Yamamoto, A. et al., Simultaneous analysis of individual catechins, caffeine, and ascorbic acid in commercial canned green and black teas by micellar electrokinetic chromatography, Anal. Sci., 1998, 14(2): 435–438.CrossRefGoogle Scholar
  23. 23.
    Pomponio, R., Gotti, R., Santagati, N. A. et al., Analysis of catechins in extracts of Cistus species by microemulsion electrokinetic chromatography, J. Chromatogr. A, 2003, 990(1–2): 215–223.CrossRefGoogle Scholar
  24. 24.
    Pomponio, R., Gotti, R., Luppi, B. et al., Microemulsion electrokinetic chromatography for the analysis of green tea catechins: Effect of the cosurfactant on the separation selectivity, Electrophoresis, 2003, 24(10): 1658–1667.CrossRefGoogle Scholar
  25. 25.
    Horie, H., Mukai, T., Kohata, K., Simultaneous determination of qualitatively important components in green tea infusions using capillary electrophoresis, J. Chromatogr. A, 1997, 758(2): 332–335.CrossRefGoogle Scholar
  26. 26.
    Chen, C. C., Shi, L. L., Chen, C. C., Effect of extraction temperature and time on polyphenol contents and composition and sensory quality of oolong tea infusion, Food Sci., 1996, 23: 285–298.Google Scholar
  27. 27.
    Stach, D., Schmitz, O. J., Decrease in concentration of free catechins in tea over time determined by micellar electrokinetic chromatography, J. Chromatogr. A, 2001, 924(1–2): 519–522.CrossRefGoogle Scholar
  28. 28.
    Lin, J. K., Lin, Y. L., Liang, Y. C. et al., Survey of catechins, gallic acid, and methylxanthines in green, oolong, pu-erh, and black teas, J. Agric. Food Chem. 1998, 46(9): 3635–3642.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  • Guanqun Song
    • 1
  • Jinming Lin
    • 1
  • Feng Qu
    • 1
  • C. W. Huie
    • 2
  1. 1.Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  2. 2.Department of ChemistryHong Kong Baptist UniversityHong KongChina

Personalised recommendations