Advertisement

Chinese Science Bulletin

, Volume 48, Issue 2, pp 148–153 | Cite as

HLA-G inhibits xenogenetic cytotoxicity mediated by human NK cells and T lymphocytes against PECs

  • Bin Shi
  • Huijun Yin
  • Xiuying Huang
  • Fangzhen Sun
Reports
  • 27 Downloads

Abstract

In order to investigate whether the non-classical HLA-G class I molecule protects the porcine endothelial cells (PECs) from the lysis mediated by human immune cells in pig to human discordant xenotransplantation, we have cloned HLA-G cDNA from a human placenta by RT-PCR. Mammalian expression vector, pEFG-neo, was constructed by insertion of HLA-G cDNA in pEF-neo. We obtained efficiently expressed PECs by stable transfection. Cytotoxicity assay showed that overexpression of HLA-G on PECs was sufficient to inhibit human NK-92 cell lysis. The level of lysis was equal to or less than that of the lysis of human umbilical vein endothelial cells mediated by human NK-92 cells. It also indicated that HLA-G inhibited the lysis of PECs mediated by xeno-antigen specific T lymphocytes. The reduction of lysis ranged between 59.1% and 88.9%. These findings suggest that the transgenic approach to overexpress HLA-G is believed to be a new immunotherapy in overcoming the immune rejections in xenotransplantion, including delayed xenograft rejection and cell-mediated rejection.

Keywords

HLA-G xenotrasplantation immune rejection gene overexpression cytotoxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rogers, N. J., Dorling, A., Moore, M., Xenotransplantation: Steps towards a clinical reality, Immunology Today, 1998, 19(5): 206.CrossRefGoogle Scholar
  2. 2.
    Rieger, L., Hofmeister, V., Probe, C. et al., Th1-and Th2-like cytokine production by first trimester decidual large granular lymphocytes is influenced by HLA-G and HLA-E, Mol. Hum. Reprod., 2002, 8(3): 255.CrossRefGoogle Scholar
  3. 3.
    Urosevic, M., Trojan, A., Dummer, R., HLA-G and its ligands in cancer—another enigma yet to be solved, J. Pathol., 2002, 196(3): 252.CrossRefGoogle Scholar
  4. 4.
    Chumbley, G., King, A., Robertson, K. et al., Resistance of HLA-G and HLA-A2 transfectants to lysis by decidual NK cells, Cell. Immunol., 1994, 155(2): 312.CrossRefGoogle Scholar
  5. 5.
    King, A., Allan, D. S., Bowen, M. et al., HLA-E is expressed on trophoblast and interacts with CD94/NKG2 receptors on decidual NK cells, Eur. J. Immunol., 2000, 30(6): 1623.CrossRefGoogle Scholar
  6. 6.
    Dorling, A., Monk, N. J., Lechler, R., HLA-G inhibits the transendothelial migration of human NK cells, Eur. J. Immunol., 2000, 30: 586.CrossRefGoogle Scholar
  7. 7.
    Forte, P., Ulrike, B., Strasser, M. et al., Porcine aortic endothelial cells transfected with HLA-G are partially protected from xenogeneic human NK cytotoxicity, Human Immunology, 2000, 61: 1066.CrossRefGoogle Scholar
  8. 8.
    Feng, Z. M., Zhang, X. F., Wang, H. F. et al., Differential recognition of MHC class I molecules of xeno-/allo-endothelial cells by human NK cells, Science in China, Ser. C, 2000, 43(2): 176.CrossRefGoogle Scholar
  9. 9.
    Bainbridge, D. R. J., Ellis, S. A., Sargent, I. L., HLA-G suppresses proliferation of CD4+ T-lymphocytes, J. Reprod. Immunol., 2000, 48: 17.CrossRefGoogle Scholar
  10. 10.
    Le Gal, F. A., Riteau, B., Sedlik, C. et al., HLA-G-mediated inhibition of antigen specific cytotoxic T lymphocytes, International Immunology, 1999, 11(8): 1351.CrossRefGoogle Scholar
  11. 11.
    Bai, C., Qiao, D. H., Sun, F. Z., Inhibition of the cytotoxicity of human complement by porcine endothelial cells expressing human membrane cofactor protein, Chin. J. Microbiol. Immunol. (in Chinese), 1999, 19(2): 133.Google Scholar
  12. 12.
    Ryan, U. S., Maxwell, G., Isolation, culture and subculture of bovine pulmonary artery endothelial cells, Mechanical Methods, 1986, 10(1): 3.Google Scholar
  13. 13.
    Gong, J. H., Maki, G., Klingemann, H. G., Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells, Leukemia, 1994, 8(4): 652.Google Scholar
  14. 14.
    Cerny, A., Fowler, P., Brothers, M. A. et al., Induction in vitro of a primary human antiviral cytotoxic T cell response, Eur. J. Immunol., 1995, 25: 627.CrossRefGoogle Scholar
  15. 15.
    Chomczynski, P., Sacchi, N., Single-step method of RNA isolation by guanidium thiocyanate-phenol-chloroform extraction, Anal. Biochem., 1987, 162: 156.CrossRefGoogle Scholar
  16. 16.
    Inverardi, L., Clissi, B., Stolzer, A. L. et al., Human natural killer lymphocytes directly recognize evolutionarily conserved oligosaccharide ligands expressed by xenogeneic tissues, Transplantation, 1997, 63(9): 1318.CrossRefGoogle Scholar
  17. 17.
    Ishitani, A., Geraghty, D. E., Alternative splicing of HLA-G transcripts yields proteins with primary structures resembling both class I and class II antigens, Proc. Natl. Acad. Sci. USA, 1992, 89: 3947.CrossRefGoogle Scholar
  18. 18.
    Duquesnoy, R. J., Li, Y. P., Transplantation Immunology (in Chinese), Beijing: Science Press, 2000, 586–587.Google Scholar
  19. 19.
    Kapasi, K., Albert, S. E., Yie, S. M. et al., HLA-G has a concentration-dependent effect on the generation of an allo-CTL response, Immunology, 2000, 101: 191.CrossRefGoogle Scholar
  20. 20.
    Riteau, B., Freiss, N. R., Menier, C. et al., HLA-G2, -G3, and -G4 isoforms expressed as nonmature cell surface glycoproteins inhibit NK and antigen-specific CTL cytolysis, The Journal of Immunology, 2001, 166: 5018.Google Scholar
  21. 21.
    Uetsuki, T., Naito, A., Nagata, S. et al., Isolation and characterization of the human chromosomal gene for polypeptide chain elongation factor-la, J. Biol. Chem., 1989, 246: 5791.Google Scholar
  22. 22.
    Ljunggren, H. G., Karre, K., In search of the “missing self” MHC molecules and NK cell recognition, Immunol. Today, 1990, 11: 237.CrossRefGoogle Scholar
  23. 23.
    Sasaki, H., Xu, X. C., Douglas, M. et al., HLA-G expression protects porcine endothelial cells against natural killer cell-mediated xenogeneic cytotoxicity, Transplantation, 1999, 67: 31.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  • Bin Shi
    • 1
  • Huijun Yin
    • 1
  • Xiuying Huang
    • 1
  • Fangzhen Sun
    • 1
  1. 1.Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina

Personalised recommendations