Structural relaxation of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass under high pressure

  • Gong Li
  • Liling Sun
  • Jun Zhang
  • Riping Liu
  • Qin Jing
  • Wenkui Wang
  • Yunpeng Gao
  • Dan Chen


Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (BMG) is annealed at 573 K under 3 GPa and its structural relaxation is investigated by X-ray diffraction, ultrasonic study, compression as well as sliding wear measurements. It is found that after the ZrTiCuNiBe BMG sample was annealed under high pressure, the mechanical properties were improved. Moreover, theBMG with relaxed structure exhibits markedly different acoustic properties. These results are attributed to the fact that relaxation under high-pressure results in a microstructural transformation in the BMG.


Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass high pressure structure relaxation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, H. S., The influence of structural relaxation on the density and Young’s modulus of metallic glasses, J. Appl. Phys., 1978, 49: 3289–3291.CrossRefADSGoogle Scholar
  2. 2.
    Duine, P. A., Sietsma, J., Van Den Beukel, Atomic transport in amorphous Pd40Ni40P20 near the glass-transition temperature: Au diffusivity and viscosity. Phys. Rev. B, 1993, 48: 6957–6957.CrossRefADSGoogle Scholar
  3. 3.
    Angell, A., Liquid landscape, Nature, 1998, 393: 521–524.CrossRefADSGoogle Scholar
  4. 4.
    Giessen, B. C., Gordon, G. E., X-ray diffraction new high-speed technique based on X-ray spectrography, Science, 1968, 159: 973–975.CrossRefADSGoogle Scholar
  5. 5.
    Hafner, J., Von Heimendahl, L., Microscopic calculations of the stability of metallic glasses, Phys. Rev. Lett., 1979, 42: 386–388.CrossRefADSGoogle Scholar
  6. 6.
    Golding, B., Bagley, B. G., Hsu, F. S. L., Soft transverse phonons in a metallic glass. Phys. Rev. Lett., 1972, 29: 68–70.CrossRefADSGoogle Scholar
  7. 7.
    Fan, C., Li, C., Inoue, A., Deformation behavior of Zr-based bulk nanocrystalline amorphous alloys, Phys. Rev. B, 2000, 61: 3761–3763.CrossRefADSGoogle Scholar
  8. 8.
    Wang, L. M., Wang, W. H., Wang, R. J. et al., Ultrasonic investigation of Pd39Ni10Cu30P21 bulk metallic glass under high pressure, Appl. Phys. Lett., 2000, 77: 1147–1149.CrossRefADSGoogle Scholar
  9. 9.
    Wang, L. M., Li, G., Zhan, Z. J., et al., Comparison of structural relaxation of Pd39Ni10Cu30P21 bulk metallic glass under ambient pressure and high pressure. Philo. Mag. Lett., 2001, 81: 419–421.CrossRefADSGoogle Scholar
  10. 10.
    Liu, R. P., Sun, L., Zhao, J. H. et al., Evaluation of effective mass transport coefficients through comparison of solidification on the ground and on board a satellite, Appl. Phys. Lett., 1997, 71: 64–65.CrossRefADSGoogle Scholar
  11. 11.
    Liu, R. P., Zhao, J. H., Wang, W. K., Influence of buoyancy convection on solute distribution in Pd40Ni40P20 Alloy, J. Mater. Sci., 1998, 33: 2679–2682.CrossRefADSGoogle Scholar
  12. 12.
    Liu, R. P., Zhou, Z. H., Wang, W. K., Effects of buoyancy convection on phase morphology during solidification of Pd40Ni40P20 alloy. Mater. Sci. Eng. 1999, A264: 167–171.Google Scholar
  13. 13.
    Liu, R. P., Zhao, J. H., Wang, W. K., Difference in microstructure of Pd77.5Au6Si16.5 alloy solidified under microgravity and gravity conditions, Sci. Chin., 1999, A42, 74–79.CrossRefGoogle Scholar
  14. 14.
    Wang, W. H., Wang, R. J., Yao, Y. S., Microstructural transformation in a Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass under high pressure. Phys. Rev. B, 2001, 62, 11292–11296.CrossRefADSGoogle Scholar
  15. 15.
    Johnson, W. L., Fundamental aspects of bulk metallic glass formation in multicomponents alloys. Mater. Sci. Forum, 1996, 35: 225–227.Google Scholar
  16. 16.
    Li, G., Zhan, Z. J., Wang, L. M., et al., Gravity effect on microstructure of Zr41Ti14Cu12.5Ni10Be22.5 bulk amorphous forming alloy, Chin. Sci. Bull., 2001, 61: 961–963.CrossRefGoogle Scholar
  17. 17.
    Schreiber, D., Elssic Constants and Their Measurement. New York: McGraw-Hill, 1973, 123–124.Google Scholar
  18. 18.
    Zhang, F. X., Wang, W. K., Crystal structure of germanium quenched from the melt under high pressure. Phys. Rev. B, 1995, 52: 3113–3116.CrossRefADSGoogle Scholar
  19. 19.
    Li, G., Wang, Y. Q., Wang, L. M. et al., Wear behavior of Zr41Ti14Cu12.5Be22.5 bulk metallic glasses, J. Mater. Res., 2002, 17: 1877–1880.CrossRefADSGoogle Scholar
  20. 20.
    Wang, W. H., Wang, R. J., Pan, M. X. et al., Elastic constants, and their pressure dependence of Zr41Ti14Cu12.5Ni9Be22.5C1 bulk metallic glass, Appl. Phys. Lett., 1999, 74: 1803–1805.CrossRefADSGoogle Scholar
  21. 21.
    Larsen-Basse, in Friction, Lubrication, and Wear Technology (ed. Blau, P. J.), ASM International, The Materials Information Society, Materials Park, OH, 1995, 24.Google Scholar
  22. 22.
    Gibson, J. M., Treacy, M. M. J., Diminished medium range order observed in annealed amorphous germanium. Phys. Rev. Lett., 1997, 78: 1074–1076.CrossRefADSGoogle Scholar
  23. 23.
    Xing, L. Q., Eckert, J., Löser, W., et al., High-strength materials produced by precipitation of icosahedral quasicrystals in bulk Zr−Ti−Cu−Ni−Al amorphous alloys. Appl. Phys. Lett. 1999, 74: 664–666.CrossRefADSGoogle Scholar
  24. 24.
    Clemens, B. M., Kung, H., Barnerr, S. A., Structure and strength of multilayers, MRS Bull., 1999, 24(2): 20–26.Google Scholar
  25. 25.
    Kung, H., Foedke, T., Mechanical behavior of nanostructured materials, MRS Bull., 1999, 24(2): 14–15.Google Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  • Gong Li
    • 1
    • 2
  • Liling Sun
    • 2
  • Jun Zhang
    • 2
  • Riping Liu
    • 1
  • Qin Jing
    • 1
  • Wenkui Wang
    • 1
    • 2
  • Yunpeng Gao
    • 3
  • Dan Chen
    • 4
  1. 1.Key Laboratory of Metastable Materials Science and TechnologyQinhuangdaoChina
  2. 2.Institute of Physics & Center for Condensed Matter PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Beifang Mingjing Glass Com. Ltd.QinhuangdaoChina
  4. 4.Tianjin Heavy Machiner CompanyTianjinChina

Personalised recommendations