Science in China Series A: Mathematics

, Volume 45, Issue 9, pp 1202–1210 | Cite as

Admittance of a one-channel conductor containing a scattering region and Andreev reflection in an N-S mesoscopic system

  • Zhang Gang 
  • Zhiliang Cao
  • Wenhui Duan
  • Binglin Gu


We introduce local density of states in normal-conductor-superconductor compound systems and injectivity, emissivity to describe the transmission properties in these systems. Then we study the admittance of a one-channel conductor which contains a scattering region and Andreev reflection with the discrete potential model and effective scattering approach.


local density of states self-consistent potential normal-conductor-superconductor contact Andreev reflection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Patel, N. K., Martin-Moreno, L., Pepper, M. et al., Ballistic transport in one dimension: additional quantisation produced by an electric field, J. Phys.: Condens. Matter, 1990, 2: 7247.CrossRefGoogle Scholar
  2. 2.
    Glazman, L. I., Khaetskii, A. V., Nonlinear quantum conductance of a lateral microconstraint in a heterostructure, Europhys. Lett., 1989, 9: 263.CrossRefGoogle Scholar
  3. 3.
    Kouwenhoven, L. P., van Wees, B. J., Harmans, C. J. et al., Nonlinear conductance of quantum point contacts, Phys. Rev. B, 1989, 39: 8040.CrossRefGoogle Scholar
  4. 4.
    Kluksdahl, N. C., Kriman, A. M., Ferry, D. K. et al., Self-consistent study of the resonant-tunneling diode, Phys. Rev. B, 1989, 39: 7720.CrossRefGoogle Scholar
  5. 5.
    Landauer, R., Nonlinearity in Condensed Matter, Berlin: Springer, 1987.Google Scholar
  6. 6.
    Büttiker, M., Thomas, H., Prêtre, A., Current partition in multiprobe conductors in the presence of slowly oscillating external potentials, Z. Phys. B, 1994, 94: 133.CrossRefGoogle Scholar
  7. 7.
    Prêtre, A., Thomas, H., Büttiker, M., Dynamic admittance of mesoscopic conductors: discrete-potential model, Phys. Rev. B, 1996, 54: 8130.CrossRefGoogle Scholar
  8. 8.
    Christen, T., Büttiker, M., Low-frequency admittance of quantized Hall conductors, Phys. Rev. B, 1996, 53:2064.CrossRefGoogle Scholar
  9. 9.
    Christen, T., Büttiker, M., Low frequency admittance of a quantum point contact, Phys. Rev. Lett., 1996, 77: 143.CrossRefGoogle Scholar
  10. 10.
    Andreev, A. F., Thermal Conductivity of The Intermediate State of Superconductors, Soviet Phys. JEPT, 1964, 19: 5.Google Scholar
  11. 11.
    Kastalsky, A., Observation of pair currents in superconductor-Semiconductor contacts, Phys. Rev. Lett., 1991, 67: 3026.CrossRefGoogle Scholar
  12. 12.
    Petrashov, V. T., Antonov, V. N., Delsing, P. et al., Phase memory effects in mesoscopic rings with superconducting “mirrors”, Phys. Rev. Lett., 1993, 70: 347.CrossRefGoogle Scholar
  13. 13.
    Petrashov, V. T., Antonov, V. N., Delsing, P. et al., Phase controlled conductance of mesoscopic structures with superconducting “mirrors”, Phys. Rev. Lett., 1995, 74: 5268.CrossRefGoogle Scholar
  14. 14.
    Hekking, F. W. J., Nazarov, Y. V., Interference of two electrons entering a superconductor, Phys. Rev. Lett., 1993, 71: 1625.CrossRefGoogle Scholar
  15. 15.
    Hekking, F. W. J., Nazarov, Y. V., Subgap conductivity of a superconductor-normal-metal tunnel interface, Phys. Rev. B, 1994, 49: 6847.CrossRefGoogle Scholar
  16. 16.
    Zaitsev, A. V., Effect of quasiparticle interference on the conductance of mesoscopic superconductor-normal-metal coupled systems, Phys. Lett., 1994, 194: 315.CrossRefGoogle Scholar
  17. 17.
    Guéron, S., Pothier, H., Birge, N. O et al., Superconducting proximity effect probed on a mesoscopic length scale, Phys. Rev. Lett., 1996, 77: 3025.CrossRefGoogle Scholar
  18. 18.
    Beenakker, C. W. J., Random-matrix theory of quantum transport, Rev. Mod. Phys., 1997, 69: 731.CrossRefGoogle Scholar
  19. 19.
    Lambert, C. J., Raimondi, R., Phase-coherent transport in hybrid superconducting nanostructures, J. Phys.:Condens. Matter, 1998, 10: 901.CrossRefGoogle Scholar
  20. 20.
    Belzig, W., Wilhelm, F. K., Bruder, C. et al. Quasiclassical Green’s function approach to mesoscopic superconductivity, Superlattices and Microstructures, 1999, 25: 1251.CrossRefGoogle Scholar
  21. 21.
    Gramespacher, T., Büttiker, M., Distribution functions and current-correlations in normal-metal-superconductor hetero-structures, Phys. Rev. B, 2000, 61: 8125.CrossRefGoogle Scholar
  22. 22.
    Martin, A. M., Gramespacher, T., Büttiker, M., Charge fluctuations in a quantum point contact attached to a superconducting lead, Phys. Rev. B, 1999, 60: R12581.CrossRefGoogle Scholar
  23. 23.
    Blonder, G. E., Tinkham, M., Klapwijk, T. M., Transition from metallic to tunneling regimes in superconducting microconstriction: Excess current, charge imbalance, and supercurrent conversion, Phys. Rev. B, 1982, 25: 4515.CrossRefGoogle Scholar
  24. 24.
    Gasparian, V., Christen, T., Büttiker, M., Partial densities of states, scattering matrices, and Green’s functions, Phys. Rev. A, 1996, 54: 4022.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2002

Authors and Affiliations

  • Zhang Gang 
    • 1
    • 2
  • Zhiliang Cao
    • 1
  • Wenhui Duan
    • 2
  • Binglin Gu
    • 1
    • 2
  1. 1.Center for Advanced StudyTsinghua UniversityBeijingChina
  2. 2.Department of PhysicsTsinghua UniversityBeijingChina

Personalised recommendations