Advertisement

Science in China Series A: Mathematics

, Volume 45, Issue 2, pp 241–245 | Cite as

The generators of lorentz transformation in momentum space

Article
  • 137 Downloads

Abstract

In the momentum space, the angular momentum operator and the boost vector operator, i.e. the generators for the Lorentz transformation of a particle with arbitrary spin and nonzero mass are discussed. Some new expressions are obtained in terms of the orbital and spin parts.

Keywords

momentum space angular momentum operator boost vector operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chung, S. U., Spin formalism, CERN Report, 1971, CERN 71–8.Google Scholar
  2. 2.
    Chung, S. U., Helicity-coupling amplitudes in tensor formalism, Phys. Rev. D, 1993, 48: 1225–1239CrossRefGoogle Scholar
  3. 3.
    Chung, S.U., Positivity conditions on the spin density matrix: A simple parameterization, Phys. Rev. D, 1975, 11: 633–646.CrossRefGoogle Scholar
  4. 4.
    Chung, S. U., Techniques of amplitude analysis for two-pseudoscalar systems, Phys. Rev. D, 1998, 56(11): 7299–7316.CrossRefGoogle Scholar
  5. 5.
    Chung, S. U., General formulation of covariant helicity-coupling amplitudes, Phys. Rev. D, 1998, 57(1): 431–442.CrossRefGoogle Scholar
  6. 6.
    Pryce, M. H. L., Commuting co-ordinates in the new field theory, Proc. Roy. Soc. (London), 1935, A150: 166–173.Google Scholar
  7. 7.
    Pryce, M. H. L., The mass-centre in the restricted theory of relativity and its connexion with the quantum theory of elementary particles, Proc. Roy. Soc. (London), 1948, A195: 62–81.MathSciNetGoogle Scholar
  8. 8.
    Macfarlane, A. J., Kinematics of the relativistic two-particle system, J. of Math. Phys., 1963, 4: 490–500.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    McKerrel, A., Relativistic two- and three-particles states, Nuovo Cimento, 1964, 34: 1289–1305.CrossRefGoogle Scholar
  10. 10.
    Zhang Pengfei, Ruan Tunan, Spin operator for the relativistic particle, High Energy Phys. and Nucl. Phys. (Lett.), 2000, 24(6): 585–588.Google Scholar
  11. 11.
    Zhang Pengfei, Ruan Tunan, Spin operators in the quantum field theory, High Energy Phys. and Nucl. Phys. (Lett.), 2000, 24(8): 775–779.Google Scholar
  12. 12.
    Zhang Pengfei, Ruan Tunan, Relativistic spin operators, Cornmu. in Theore. Phys., 2001, 35: 293–300.Google Scholar
  13. 13.
    Eschrig, H., Servedio, V. D. P., Relativistic density functional approach to open shells, J. of Computation Chemistry, 1999, 20(1): 23–30.CrossRefGoogle Scholar
  14. 14.
    Van Wüllen, C., Relativistic all-electron density functional calculations, J. of Computation Chemistry, 1999, 20(1): 51–62.CrossRefGoogle Scholar
  15. 15.
    Faas, S., Van Lenthe, J. H., Hennum, A. C. et al., An ab initio two-component relativistic method including spin-orbit coupling using the regular approximation, J. Chem. Phys., 2000, 113: 4052–4059.CrossRefGoogle Scholar
  16. 16.
    EM Collab: Ashman, J., Badelek B., Baum G. et al., A measurement of the spin asymmetry and determination of the structure function g, in deep inelastic of muon-proton scattering, Phys. Lett. B, 1988, 206: 364–370.CrossRefGoogle Scholar
  17. 17.
    EM Collab: Ashman J., Badelek B., Baum G. et al., An investigation of the spin structure of the proton in deep inelastic scattering of polarized muons on polarized protons, Nucl. Phys. B, 1989, 328: 1–35.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2002

Authors and Affiliations

  1. 1.CCAST (World Lab)BeijingChina
  2. 2.National Synchrotron Radiation Laboratory and Department of Modern PhysicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations