Skip to main content
Log in

How does innovation’s tail risk determine marginal tail risk of a stationary financial time series?

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

We discuss the relationship between the marginal tail risk probability and the innovation’s tail risk probability for some stationary financial time series models. We first give the main results on the tail behavior of a class of infinite weighted sums of random variables with heavy-tailed probabilities. And then, the main results are applied to three important types of time series models: infinite order moving averages, the simple bilinear time series and the solutions of stochastic difference equations. The explicit formulas are given to describe how the marginal tail probabilities come from the innovation’s tail probabilities for these time series. Our results can be applied to the tail estimation of time series and are useful for risk analysis in finance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mandelbrot, B., The variation of certain speculative prices, Journal of Business, 1963, 36: 394–419.

    Article  Google Scholar 

  2. Mandelbrot, B., New methods in statistical economics, Journal of Political Economy, 1963, 71: 421–440.

    Article  Google Scholar 

  3. Fama, E., The behavior of stock market prices, J. Business, 1965, 38: 34–105.

    Article  Google Scholar 

  4. Adler, R. J., Feldaman, R., Taqqu, M. (eds.), A User’s Guide to Heavy Tails: Statistical Techniques for Analyzing Heavy Tailed Distribution and Processes, Boston: Birkhauser, 1997.

    Google Scholar 

  5. Resnick, S., Heavy tail modeling and teletraffic data, Ann. Statist., 1997, 25: 1805–1869.

    Article  MATH  MathSciNet  Google Scholar 

  6. Barndorff-Nielsen, O. E., Shephard, N., Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics, J. R. Statist. Soc. B, 2001, Vol. 63, Part 2: 167–241.

    Article  MATH  MathSciNet  Google Scholar 

  7. Cline, D., Estimation and linear prediction for regression, autoregression and ARMA with infinite variance data, Ph. D. dissertation, Dept. Statistics, Colorado State Univ., 1983.

  8. Resnick, S., Extreme Values, Regular Variation, and Point Processes, New York: Springer, 1987.

    MATH  Google Scholar 

  9. Davis, R., Resnick, S., Limit theory for bilinear processes with heavy tailed noise, Ann. Appl. Prob., 1996, 6: 1191–1210.

    Article  MATH  MathSciNet  Google Scholar 

  10. De Haan, L., Resnick, S. I., Rootzen, H. et al., Extremal behavior of solutions to a stochastic difference equation with applications to ARCH process, Stochastic Process Appl., 1989, 32: 213–224.

    Article  MATH  MathSciNet  Google Scholar 

  11. Embrechts, P., Kluppelberg, C., Mikosch, T., Modelling Extremal Events for Insurance and Finance, Berlin: Springer-Verlag, 1997.

    MATH  Google Scholar 

  12. Pan, J. Z., Tail dependence of random variables from ARCH and heavy-tailed bilinear models, Science in China, Ser. A, 2002, 45(6): 749–760.

    MATH  Google Scholar 

  13. Mikosch, T., Starica, C., Limit theory for the sample autocorrelations and extremes of a GARCH(1,1) process, Ann. Statist., 2000, 28: 1427–1451.

    Article  MATH  MathSciNet  Google Scholar 

  14. Kallenberg, O., Random Measures, 3rd ed., Berlin: Akademie-Verlag, 1983.

    MATH  Google Scholar 

  15. Bingham, N., Goldie, C., Teugels, J., Regular variation, Encyclopedia of Mathematics and Its Applications, Cambridge Univ. Press, 1987.

  16. Liu, J., On the existence of a general multiple bilinear time series, J. Time Series Anal., 1989, 10: 341–355.

    Article  MATH  Google Scholar 

  17. Resnick, S., Willekens, E., Moving averages with random coefficients and random coefficient autoregressive models, Stochastic Models, 1990, 7: 511–526.

    MathSciNet  Google Scholar 

  18. Breiman, L., On some limit theorems similar to the arc-sin law, Theory Probab.Appl., 1965, 10: 323–331.

    Article  MathSciNet  Google Scholar 

  19. Engle, R., Autoregressive conditional heteroscedastic models with estimates of the variance of United Kingdom inflation, Econometrica., 1982, 10: 323–331.

    MathSciNet  Google Scholar 

  20. Bolerslev, T., A generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 1986, 31: 307–327.

    Article  MathSciNet  Google Scholar 

  21. Kesten, H., Random difference equations and renewal theory for products of random matrices, Acta Math., 1973, 131: 207–248.

    Article  MATH  MathSciNet  Google Scholar 

  22. Goldie, C. M., Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab., 1991, 1: 126–166.

    Article  MATH  MathSciNet  Google Scholar 

  23. Vervaat, W., On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables, Adv. Appl. Probab., 1979, 11: 750–783.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Jiazhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, J., Yu, B.W.T. & Pang, W.K. How does innovation’s tail risk determine marginal tail risk of a stationary financial time series?. Sci. China Ser. A-Math. 47, 321–338 (2004). https://doi.org/10.1360/02ys0317

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02ys0317

Keywords

Navigation