Science in China Series A: Mathematics

, Volume 46, Issue 5, pp 631–640 | Cite as

Analyticity of thermoelastic plates with dynamical boundary conditions

Science in China (Series A)


We consider a thermoelastic plate with dynamical boundary conditions. Using the contradiction argument of Pazy’s well-known analyticity criterion and P.D.E. estimates, we prove that the correspondingC 0 semigroup is analytic, hence exponentially stable.


thermoelasticity C0 semigroup analyticity exponential stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Russell, D. L., A general framework for the study of indirect damping mechanisms in elastic systems, J. Math. Anal. Appl., 1993, 173: 339–58.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Liu, Z. Y., Renardy, M., A note on the equations of a thermoelastic plate, Appl. Math. Appl., 1995, 8(3): 1–6.MathSciNetGoogle Scholar
  3. 3.
    Liu, K. S., Liu, Z. Y., Exponential stability and analyticity of abstract linear thermoelastic systems, Z. Angew. Math. Phys., 1997, 48: 885–04.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Lasiecka, I., Triggiani, R., Two direct proofs on the analticity of the s.c.semigroup arising in abstract thermoelastic equations, Adv. Differential Equations, 1998, 3: 387–16.MATHMathSciNetGoogle Scholar
  5. 5.
    Lasiecka, I., Triggiani, R., Analyticity of thermoelastic semigroups with coupled B.C. Part II: the case of free boundary conditions, Ann. Scuola Norm. sup. Pisa Cl. Sci., 1998, XXVII(4): 457–97.MathSciNetGoogle Scholar
  6. 6.
    Lasiecka, I., Triggiani, R., Control Theory for Partial Differential Equations: vol I, Abstract Parabolic Systems, Cambridge: Cambridge University Press, 2000.Google Scholar
  7. 7.
    Rao, B., Stabilization of elastic plates with dynamical boundary control, SIAM J. Control Optim., 1998, 36: 148–63.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, New York: Springer-Verlag, 1983.MATHGoogle Scholar
  9. 9.
    Liu, Z. Y., Zheng, S. M., Semigroups Associated With Dissipative Systems, Boca Raton: Chapman & Hall/CRC Research Notes in Mathematics 398, 1999.MATHGoogle Scholar
  10. 10.
    Lagnese, J. E., Boundary Stabilization of Thin Plates, Philadelphia: SIAM, 1989.MATHCrossRefGoogle Scholar
  11. 11.
    Grisvard, P., Elliptic Problems in Nonsmooth Domains, London: Pitman, 1985.MATHGoogle Scholar
  12. 12.
    lLions, J. L., Magenes, E., Non-Homogeneous Boundary Value Problems and Applications, V.1, New York: Springer-Verlag, 1972.Google Scholar
  13. 13.
    Adams, R., Sobolev Spaces, New York: Academic Press, 1975.MATHGoogle Scholar
  14. 14.
    Curtain, R. F., Zwart, H. J., An Introduction to Infinite-Dimensional Systems Theory, New York: Springer-Verlag, 1995.MATHGoogle Scholar
  15. 15.
    Huang, F. L., Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1985, 1: 43–56.MATHMathSciNetGoogle Scholar
  16. 16.
    Kim, J. U., On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 1992, 23: 889–99.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Komornik, V., Exact Controllability and Stabilization: The Multiplier Method, Paris: Masson-John Wiley, 1994.MATHGoogle Scholar
  18. 18.
    Yosida, K., Functional Analysis, New York: Springer-Verlag, 1980.MATHGoogle Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  1. 1.Department of MathematicsSichuan UniversityChengduChina

Personalised recommendations