Subspaces of FMmlet transform

  • Zou Hongxing 
  • Dai Qionghai 
  • Zhao Ke 
  • Chen Guiming 
  • Li Yanda 
Article
  • 28 Downloads

Abstract

The subspaces of FMmlet transform are investigated. It is shown that some of the existing transforms like the Fourier transform, short-time Fourier transform, Gabor transform, wavelet transform, chirplet transform, the mean of signal, and the FM−1let transform, and the butterfly subspace are all special cases of FMmlet transform. Therefore the FMmlet transform is more flexible for delineating both the linear and nonlinear time-varying structures of a signal.

Keywords

FMmlet transform chirplet transform subspace parametric time-frequency signal representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zou, H. X., Zhou, X. B., Li, Y. D., Which time-frequency analysis? — A survey, Acta Electronica Sinica, 2000, 28(9): 78.Google Scholar
  2. 2.
    Mallat, S., Zhang, Z., Matching pursuits with time-frequency dictionaries, IEEE Trans. Signal Processing, 1993, 41(12): 3397.MATHCrossRefGoogle Scholar
  3. 3.
    Qian, S. E., Chen, D. P., Signal representation via adaptive normalized Gaussian functions, IEEE Trans. Signal Processing, 1994, 36(1): 1.MATHGoogle Scholar
  4. 4.
    Mann, S., Haykin, S., The chirplet transform: Physical considerations, IEEE Trans. Signal Processing, 1995, 43(11): 2745.CrossRefGoogle Scholar
  5. 5.
    Mihovilovic, D., Bracewell, R. N., Adaptive chirplet representation of signals of time-frequency plane, Electron. Lett., 1991, 27(13): 1159.CrossRefGoogle Scholar
  6. 6.
    Baraniuk, R. G., Jones, D. L., Wigner-based formulation of the chirplet transform, IEEE Trans. Signal Processing, 1996, 44(12): 3129.CrossRefGoogle Scholar
  7. 7.
    Yin, Q. Y., Ni, Z. F., Qian, S. E. et al., Adaptive oriented orthogonal projective decomposition, Acta Electronica Sinica, 1997, 25(4): 52.Google Scholar
  8. 8.
    Bultan, A., A four-parameter atomic decomposition of chirplets, IEEE Trans. Signal Processing, 1999, 47(3): 731.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bultan, A., Akansu, A. N., Frames in rotated time-frequency planes, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1999, March 15—March 19: 1353.Google Scholar
  10. 10.
    Hamar, D., Tarcsai, G., Lichtenberger, J. et al., Fine structure of whistlers using digital matched filtering, Ann. Geophys., 1982, 119.Google Scholar
  11. 11.
    Boushash, B., Whitehouse, H. J., Seismic applications of the Wigner-Ville distribution, Proc. IEEE Int. Conf. Circuits Syst., New York, 1986, 34–37.Google Scholar
  12. 12.
    Krishnamachari, S., Williams, W. J., Adaptive kernel design in the generalized marginals domain for time-frequency analysis, Proc. IEEE ICASSP’94, III, 1994.Google Scholar
  13. 13.
    Jones, D. L., Baraniuk, R. G., An adaptive optimal-kernel time-frequency representation, IEEE Trans. Signal Processing, 1995, 43(10): 2361.CrossRefGoogle Scholar
  14. 14.
    Wang, J., Zhou, J., Chirplet-based signal approximation for strong earthquake ground motion model, IEEE Signal Processing Magazine, 1999, 16(2): 94.MATHCrossRefGoogle Scholar
  15. 15.
    Valiere, J. C., Poisson, F., Depollier, C. et al., High-speed moving source analysis using chirplets, IEEE Signal Processing Letters, 1999, 6(5): 113.CrossRefGoogle Scholar
  16. 16.
    Zou, H. X., Dai, Q. H., Wang, R. M. et al., Parametric TFR via windowed exponential frequency modulated atoms, IEEE Signal Processing Letters, 2001, 8(5)(to appear).Google Scholar
  17. 17.
    Illingworth, J., Kittler, J., A survey of the Hough transform, Computer Vision, Graphics, Image Processing, 1988, 44(10): 87.CrossRefGoogle Scholar
  18. 18.
    Zou, H. X., Lu, X. G., Dai, Q. H. et al., Nonexistence of cross-term free time-frequency distribution with concentration of Wigner-Ville distribution, Science in China, Ser. F, 2002, vol. 45, in press.Google Scholar

Copyright information

© Science in China Press 2002

Authors and Affiliations

  • Zou Hongxing 
    • 1
  • Dai Qionghai 
    • 1
  • Zhao Ke 
    • 2
  • Chen Guiming 
    • 2
  • Li Yanda 
    • 1
  1. 1.Department of AutomationTsinghua UniversityBeijingChina
  2. 2.The Second Artillery Institute of EngineeringXi’anChina

Personalised recommendations