Advertisement

Neural networks and graph theory

Article
  • 867 Downloads

Abstract

The relationships between artificial neural networks and graph theory are considered in detail. The applications of artificial neural networks to many difficult problems of graph theory, especially NP-complete problems, and the applications of graph theory to artificial neural networks are discussed. For example graph theory is used to study the pattern classification problem on the discrete type feedforward neural networks, and the stability analysis of feedback artificial neural networks etc.

Keywords

artificial neural network graph theory 

References

  1. 1.
    Peretto, P., An Introduction to the Modeling of Neural Networks, London: Cambridge University Press, 1992.MATHGoogle Scholar
  2. 2.
    Gallant, S. I., Neural Network Learning and Expert Systems, Cambridge: The MIT Press, 1993.MATHGoogle Scholar
  3. 3.
    Bondy, J. A., Murty, U. S. R., Graph Theory with Application, London, Basingtoke, New York: The MacMillan Press LTD, 1976.Google Scholar
  4. 4.
    Hopfield, J. J., Tank, D. W., Neural computation of dicisions optimization problem, Biol. Cybernetics, 1985, 52: 141–152.MATHMathSciNetGoogle Scholar
  5. 5.
    Gibbons, A., Algorithmic Graph Theory, Cambridge, London, New York: Cambridge University Press, 1985.MATHGoogle Scholar
  6. 6.
    Dahl, E. D., Neural network algorithm for an NP-complete problem: map and graph coloring, Proc. IEEE First International Conference on Neural Networks, Vol. III, June, San Diego, New York: IEEE, 1987, 113–120.Google Scholar
  7. 7.
    Xu, Jin, Zhang Junvin, Bao Zheng, Coloring alogorithm of graph theory based on Hopfield neural network, Acta Electronica Sinica, 1996, 24(10): 8–13.Google Scholar
  8. 8.
    Ma Songde, Artificial neural networks and optimization, Proceedings of the First Chinese Conference on Articifial Neural Networks, Beijing (in Chinese), Beijing: China Neural Network Society, 1990, 22–28.Google Scholar
  9. 9.
    Chen Guoliang, Optimal problems based on ANN, Proceedings of the First Chinese Conference on Articifial Neural Networks, Beijing (in Chinese), Beijing: China Neural Network Society, 1990, 122–129.Google Scholar
  10. 10.
    Liang Weufa et al., Some algorithms of hard graph theory problems based on artificial neural networks, Proceedings of the First Chinese Conference on Articifial Neural Networks, Beijing (in Chinese), Beijing: China Neural Network Society, 1990, 924–927.Google Scholar
  11. 11.
    Xu Jin, Zhang, J. Y., Bao, Z., A new isomorphic algorithm based on Hopfield neural networks, Journal of Electronics, 1996, 18: 116–121.Google Scholar
  12. 12.
    Xu Jin, Self-complementary Graph Theory with Applications: Chapter 6, Xi'an: Xidian University Press, 1999.Google Scholar
  13. 13.
    Bron, C., Kerbosch, J., Finging all cliques of an undirected graph, Commun. Ass. Mach., 1973, 16: 575–577.MATHGoogle Scholar
  14. 14.
    Gendreau, M., Picard, J. C., Zubieta, L., An efficient implicit enumeration algorithm for the maximum clique problem, Lecture Notes in Economics and Mathematical Systems (eds. Kurzhanski, A. et al.), New York: Springer-Verlag, 1988, 304: 79–91.Google Scholar
  15. 15.
    Mitten, L. G., Branch and bound method: general formulation and properties, Ops. Res., 1970, 18: 24–34.MATHMathSciNetGoogle Scholar
  16. 16.
    Robson, J. M., Algorithms for maximum independent sets, J. Algorithm, 1986, 7: 425–440.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Tarjan, R. E., Trojanowski, A. E., Finding a maximum independent set, SIAM JL Comput., 1977, 6: 537–546.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Balas, E., Yu, C. S., Finging the maximum clique in an arbitrary graph, SIAM JL Comput., 1986, 15: 1054–1068.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Panos, M. P., Gregory, P. R., A brance and bound algorithm for the maximum clique problem, Computers Ops. Res., 1992, 19(5): 363–375.MATHCrossRefGoogle Scholar
  20. 20.
    Zhang, J. Y., Xu Jin, Bao, Z., A new algorithm of the maximum clique and the maximum independent set problems based on Hopfield neural network, Journal of Electronics, 1996, 18(sup): 121–127.Google Scholar
  21. 21.
    Booth, K. S., Lueker, G. S., Testing the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J. Comput. Syst. Sci., 1976, 13: 335–379.MATHMathSciNetGoogle Scholar
  22. 22.
    Hopcroft, J. E., Tarjan, R. E., Efficient planarity testing of graphs,J. Assoc. Comput. Mach., 1974, 21: 549–568.MATHMathSciNetGoogle Scholar
  23. 23.
    Lempel, A., Evens, S., Cederbaum, I., An algorithm for planarity testing of graphs, Theory of Graph (ed. Rosenstiehl, P.), New York: Gordon and Breach, 1967, 215–232.Google Scholar
  24. 24.
    Shih, W. K., Hsu, W. L., A simple test for planar graphs, Proceedings of the Third China-USA International Conference on Graph Theory, Beijing (eds. Alavi, Y., Lick, D. R., Liu Jinqiang), Singapore: World Scientific, 1994, 21–28.Google Scholar
  25. 25.
    Takefuji, Y., A near-optimum parallel planarizatio algorithm, Science, 1989, 245: 1221–1223.CrossRefGoogle Scholar
  26. 26.
    Xu Jin, Gao Lin, Zhang, J. Y., A new algorithm of planar graphs based on neural networks, Journal of Xidian University, 2001, (2): 1–5.Google Scholar
  27. 27.
    Wilson, G. V., Pawley, G. S., On stability of the traveling salesman problem algorithm of Hopfield and tank, Bio. Cybern., 1988, 58: 63–70.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Aiyer, S. V. B., Niranjan, M., Fallside, F., A theoretical investigation into the performance of the Hopfield model, IEEE Trans on Neural Network, 1990, 1(2): 204–215.CrossRefGoogle Scholar
  29. 29.
    Sun, S. Y., Zheng, J. L., A modified algorithm and theoretical analysis for Hopfield network solving TSP, Acta Electronica Sinica, 1995, 23(1): 73–78.Google Scholar
  30. 30.
    Zhang, Y. J., Ye, Z. X., Neural Networks with Applications—94' New Advance (in Chinese), Wuhan: The Huazhong University of Science and Technologicl Press, 1994.Google Scholar
  31. 31.
    Yu Daoheng, An improved neural network algorithm for TSP problem, Proceedings of the First Chinese Conference on Articifial Neural Networks (in Chinese), Beijing: China Neural Network Society, 1990, 116–121.Google Scholar
  32. 32.
    Jin Fan, Hu Fei, Chang Jianwu, A solution of C-TSP based on Hopfield Network, Proceedings of the First Chinese Conference on Articifial Neural Networks, Beijing (in Chinese), Beijing: China Neural Network Society, 1990, 122–129.Google Scholar
  33. 33.
    Fan Shemin, Ph. D. Thesis, Xi'an: Xi'an Jiaotong University, 1993.Google Scholar
  34. 34.
    Sanchis, L., Multiple-way network partitioning, IEEE Trans. Computers, 1989, 38: 62–81.MATHCrossRefGoogle Scholar
  35. 35.
    Fox, G. C., A review of automatic load balancing and decomposition methods for the Hypercube, Numerical Alorithms for Modern Parallel Computer Architectures (ed. Schultz, M.), New York: Springer-Verlag, 1988, 63–76.Google Scholar
  36. 36.
    Simon, H. D., Partitioning of unstructured problems for parallel processing, Computing Systems in Eng., 1991, 2: 135–148.CrossRefGoogle Scholar
  37. 37.
    Williams, R., Unification for spectral and intertial bisection, Technical Report, California Inst. of Technology, 1994, Available at: http://www.carcr.caltech.edu/roy/paper/Google Scholar
  38. 38.
    Hendrickson, B., Leland, R., An improved spectral graph partitioning algorithm for mapping parallel computations, SIAM J. Scientific Computing, 1995, 16(2): 45–469.CrossRefMathSciNetGoogle Scholar
  39. 39.
    Gilbert, J. R., Miller, G. L., Teng, S. H., Geometric mesh partitioning: Implementation and experiments, Proc. International First Parallel Processing Symp., (IPPS'95), 1995.Google Scholar
  40. 40.
    Boppana, R. B., Eigenvalues and graph bisection: An average case analysis, Proc. 28th Symp. Foundations of Computer Science, 1987, 280–285.Google Scholar
  41. 41.
    Bui, T. N., Chaudhuri, S., Leighton, F. T. et al., Graph bisection algorithms with good average case behavior, Combinatorica, 1987, 7(2): 171–191.CrossRefMathSciNetGoogle Scholar
  42. 42.
    Bui, T. N., Peck, A., Partitioning planar graphs, SIAM J. Computing, 1992, 21(2): 203–215.MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Garey, M., Johnson, D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness, San Francisco: Freeman, 1979.MATHGoogle Scholar
  44. 44.
    Bui, T. N., Jones, C., Finding good approximate vertex and edge partitions is NP-hard, Information Processing Letters, 1992, 42: 153–159.MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Leighton, F. T., Rao, S., An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms, Proc. 29th Symp. Foundations of Computer Science, 1988, 422–431.Google Scholar
  46. 46.
    Farhat, C., A simple and efficient automatic FEM domain decomposer, Computers and Structures, 1988, 28(5): 579–602.CrossRefGoogle Scholar
  47. 47.
    Farhat, C., Lanteri, S., Simon, H. D., TOP/DOMDEC—A software tool for mesh partitioning and parallel processing, J. Computing Systems in Eng., 1995, 6(1): 13–26.CrossRefGoogle Scholar
  48. 48.
    Laguna, M., Feo, T. A., Elrod, H. C., A greedy randomized adaptive search procedure for the two-partition problems, Operations Research, 1994, 42: 677–687.MATHCrossRefGoogle Scholar
  49. 49.
    Battiti, R., Bertossi, A. A., Differential greedy for the 0–1 equicut problem, Network Design: Connectivity and Facilities Location (eds. Du, D. Z., Pardalos, P. M.), Princeton: Amer. Math. Soc., 1997, 3–22.Google Scholar
  50. 50.
    Johnson, D. S., Aragon, C. R., Mcgeoch, L. A. et al., Optimization by simulated annealing: An experimental evaluation; Part I, Graph Partitioning, Operations Research, 1989, 37: 865–892.MATHGoogle Scholar
  51. 51.
    Kirkpatrick, S., Optimization by simulated annealing: Quantitative studies, J. Statistical Physics, 1994, 34: 975–986.CrossRefMathSciNetGoogle Scholar
  52. 52.
    Kirkpatrick, S., Gelatt, C. D. Jr., Vecchi, M. P., Optimization by simulated annealing, Science, 1983 (May), 220 (4598): 671–680.CrossRefMathSciNetGoogle Scholar
  53. 53.
    Rutebar, R., Simulated annealing algorithms: An overview, IEEE Circuit and Devices Magazine, 1989, 19–26.Google Scholar
  54. 54.
    Sechen, C., Sangiovanni-Vincetelli, A., Timberwolf3.2: A new standard cell placement and global routing package, Proc. 23rd ACM/IEEE Design Automation Conf., 1986, 432–339.Google Scholar
  55. 55.
    Sun, W., Sechen, C., Efficient and Effective placement for very large circuits, IEEE Trans. Computer-Aided Design, 1995, 14(3): 349–359.CrossRefGoogle Scholar
  56. 56.
    Battiti, R., Bertossi, A. A., Greedy, prohibition, and reactive heuristics for graph partitioning, IEEE Trans. on Computers, 1999, 48(4): 361–385.CrossRefGoogle Scholar
  57. 57.
    Bui, T. N., Moon, B. R., Genetic algorithm and grpah partitioning, IEEE Trans. Computers, 1996, 45(7): 841–855.MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Kernighan, B., Lin, S., An efficient heuristic procedure for partitioning graphs, Bell Systems Technical J., 1970, 49(2): 291–307.Google Scholar
  59. 59.
    Fiduccia, C., Mattheyses, M., A linear time heuristics for improving network partitions, Proc. 19th ACM/IEEE Deisgn Automation Conf., Las Vegas, 1993, 175–181.Google Scholar
  60. 60.
    Hendrickson, H., Leland, R., A multilevel algorithm for partitioning graphs, Technical Report SAND93-1301, SANDIA Nat'l Laboratory 1993.Google Scholar
  61. 61.
    Diekmann, R., Monien, B., Preis, R., Using helpful sets to improve graph bisections, Interconnection Networks and Mapping and Scheduling Parallel Computations (eds. Hsu, D. F., Rosenberg, A. L., Sotteau, D.), Amer. Math. Soc., 1995, 57–73.Google Scholar
  62. 62.
    Glover, F., Tabu Search-Part I, ORSA, J. Computing, 1989, 1(3): 190–260.MATHGoogle Scholar
  63. 63.
    Rolland, E., Pirkul, H., Glover, F., A tabu search for graph partitioning, Annals of Operations Research, Metaheurisitcs in Combinatorial Optimization, 1996, 63: 46–53.Google Scholar
  64. 64.
    Dell'Amico, M., Maffioli, F., A new Tabu search approach to the 0–1 equicut problem, Meta-Heuristics 1995: The State of the Art, Dordrecht: Kluwer Academic, 1996, 361–377.Google Scholar
  65. 65.
    Pirkul, H., Rolland, E., New heuristic solution procedures for the uniform graph partitioning problem: Extensions and evaluation, Computers and Operations Research, 1994, 21(8): 895–907.MATHCrossRefGoogle Scholar
  66. 66.
    Rolland, E., Pirkul, H., Heuristic solution procedures for the graph partitioning problem, Computer Science and Operations Research: New Developments in Their Interfaces (ed. Balci, O.), Oxford: Pergamon Press, 1992.Google Scholar
  67. 67.
    Bui, T. N., Jones, C., A heuristic for reducing fill in sparse matrix factorization, Proc. Sixth SIAM Conf. Parallel Processing for Scientific Computing, Philadelphia: SIAM, 1993, 445–452.Google Scholar
  68. 68.
    Garey, M. R., Johnson, D. S., Computers and Intractability: A Guide to the Theory of NP-completeness, San Francisco, New York: Freeman, 1979.MATHGoogle Scholar
  69. 69.
    Orlova, G. I., Dorfman, Y. G., Finding the maximum cut in a graph, Eng. Cybern., 1972, 10: 502–506.MATHMathSciNetGoogle Scholar
  70. 70.
    Poljak, S., Turzik, D., Max-cut in circulant graphs, Discrete Mathemaics, 1992, 108: 379–392.MATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    Hsu, C. P., Minimum-via topological routing, IEEE Trans. CAD/ICAS, 1983, (CAD) 2(4): 235–246.Google Scholar
  72. 72.
    Barahona, F., Grötschel, M., Jünger, M. et al., An application of combinatorial optimuzation to statistical physics and circuit layout design, Oper. Res., 1988, 36(3): 493–513.MATHGoogle Scholar
  73. 73.
    Delorme, C., Poljak, S., Laplacian eigenvalues and the maximum cut problem, Math. Program., 1993, 62: 557–574.CrossRefMathSciNetGoogle Scholar
  74. 74.
    Delorme, C., Poljak, S., The performance of an eigenvalue bound on the max-cut problem in some classes of graphs, Discrete Math., 1993, 111: 145–156.MATHCrossRefMathSciNetGoogle Scholar
  75. 75.
    Poljak, S., Rendl, F., Note and edge relaxations of the max-cut problem, Computing, 1994, 52: 123–137.MATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    Korst, J. H. M., Aarts, E. H. L., Combinatorial optimization on a Boltzmann machine, J. Paral. Dist. Comput., 1989, 6: 331–357.CrossRefGoogle Scholar
  77. 77.
    Funabiki, N., Nishiawa, S., Tajima, S., A binary neural network approach for max cut problems, ICONIP'96-Hong Kong, Hong Kong: The Chinese Univ. Press, 1996, 631–635.Google Scholar
  78. 78.
    Battiti, R., Albert, B. A., Greedy, prohibition, and reactive heuristes fir graph partitioning, IEEE Trans. on Computers, 1999, 48(4): 361–385.CrossRefGoogle Scholar
  79. 79.
    Ramanujam, J., Sadayapan, P., Optimization by neural networks, Proc. IEEE Int'l Conf. on Neural Networks, II, 1988, 325–332.CrossRefGoogle Scholar
  80. 80.
    Foo, Y. S., Takefuji, Y., Stochastic neural networks for solving job-shop scheduling: Part I: problem presentation, Proc. IEEE Int'l Conf. on Neural Networks, II, San Diego, New York: IEEE, 1988, 283–290.Google Scholar
  81. 81.
    Chen Guoliang, Neurocomputing with applications in optimization, Journal of Computer Science and Development, 1992, (5): 1–21.MATHCrossRefGoogle Scholar
  82. 82.
    Hopfield, J. J., Tank, D. W., Simple neural optimization nerworks: an A/D converter, signal decision circuit, and a linear programming circuit, IEEE Trans. on CAS, 1986, 33(5): 533–541.Google Scholar
  83. 83.
    Liou, C. Y., Chang, Q. M., Numerical soap film for the Steiner tree problem, ICONIP'96-Hong Kong, Hong Kong: The Chinese Univ. Press, 1996, 642–648.Google Scholar
  84. 84.
    Bruck, J., On the convergence properties of the Hopfield model, Proceedings of the IEEE, 1990, 78(10): 1579–1585.CrossRefGoogle Scholar
  85. 85.
    Goles, E., Antisymmetrical neural networks, Discrete Applied Mathematics, 1986, 13: 97–100.MATHCrossRefMathSciNetGoogle Scholar
  86. 86.
    Xu, J., Bao, Z., The stability of Antisymmetrical discrete Hopfield neural networks, Acta Electronica Sinica, 1999, 27(1): 103–107.Google Scholar
  87. 87.
    Xu Jin, Bao, Z., The linear separability of a Boolean function (I)—the fundational ofn-dimensional hypercubes, Journal of Electronics, 1996, 18: 6–13.Google Scholar
  88. 88.
    Xu Jin, Bao, Z., Linear separability of Boolean function (II), Journal of Electronics, 1996, 18: 14–21Google Scholar
  89. 89.
    Goles, E., Fogelman, F., Pellegrin, D., Decreasing energy functions as a tool for studying threshold networks, Discrete Applied Mathematics, 1985, 12: 261–277.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Science in China Press 2002

Authors and Affiliations

  1. 1.Department of Control Science and EngineeringHuazhong University of Science and TechnologyWuhanChina
  2. 2.Electronic Engineering Research InstituteUniversity of Electronic Science and TechnologyXi'anChina

Personalised recommendations