Parameterization of 3-channel non-separable 2-D wavelets and filters

Article
  • 27 Downloads

Abstract

We propose a complete parameterization presentation of the 3-channel bivariate non-separable orthogonal FIR filter, and describe the sufficient condition of generating continuous wavelet bases. Given the results above, a non-separable, compactly supported, orthogonal, continuous parameterized bivariate wavelet bank is set up here.

Keywords

wavelet function FIR filter non-separable 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vetterli, M., Nonseparable multi-dimensional perfect reconstruction filter and wavelet bases for R n, IEEE Trans Inform Theory, 1992, 38: 533–555.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Kovačević, J., Vetterli, M., Nonseparable two-dimensional and three-dimensional wavelets, IEEE Trans Signal Processing, 1995, 43(5): 1269–1273.CrossRefGoogle Scholar
  3. 3.
    Belogay, E., Wang, Y., Arbitrarily smooth orthogonal non-separable wavelets in R 2, SIAM J. Math. Anal., 1999, 30(3): 678–697.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Daubechies, I., Orthonormal bases of compactly supported wavelets, Comm Pure Appl. Math., 1998, 43: 909.MathSciNetGoogle Scholar
  5. 5.
    Daubeichies, I., Ten Lectures on Wavelets, Philadelphia: SIAM, 1992.Google Scholar
  6. 6.
    Cohen, A., Daubechies, I., Nonseparable bidimensional wavelet bases, Revista Mat Iberoamericana, 1993, 9: 51–137.MATHMathSciNetGoogle Scholar
  7. 7.
    Stanhill, D., Zeevi, Y. Y., Two-dimensional orthogonal wavelets with vanishing moments, IEEE Trans Signal Processing, 1996, 44(10): 2579–2589.CrossRefGoogle Scholar
  8. 8.
    Stanhill, D., Zeevi, Y. Y., Two-dimensional orthogonal filter banks and wavelets with linear phase, IEEE Trans Signal Processing, 1998, 46(1): 183–190.CrossRefGoogle Scholar
  9. 9.
    He Wenjie, Lai Ming, Examples of bivariate non-separable compactly supported orthonormal continuous wavelets, IEEE Trans Image Processing, 2000, 9(5): 949–953.CrossRefGoogle Scholar
  10. 10.
    Donovan, G. C., Geronimo, J. S., Hardin, D. P., Compactly supported, piecewise affine scaling functions on triangulations, Constr. Approx., 2000, 16: 201–219.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kessler, B., A short-support dual mask to the piecewise linears on a uniform triangulation, in Approximation Theory X: Wavelets, Splines, and Application (eds. Chui, C. K., Schumaker, L. L., Stoecker, J.), Vanderbilt University Press, 2002, 323–332.Google Scholar
  12. 12.
    Kessler, B., A construction of orthogonal compactly supported multiwavelets on R2, Applied and Computational Harmonic Analysis, 2000, 9: 146–165.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  1. 1.Information Engineering CollegeXiangtan UniversityXiangtanChina
  2. 2.Applied Mathematical DepartmentHunan UniversityChangshaChina
  3. 3.Hunan BranchIndustrial and Commercial Bank of ChinaChangshaChina

Personalised recommendations