Research on scale effect of histogram

  • Hao Zhang
  • Ziti Jiao
  • Hua Yang
  • Xiaowen Li
  • Jindi Wang
  • Lihong Su
  • Guangjian Yan
  • Hongrui Zhao
Article

Abstract

To describe the spatial relationship among the earth objects compactly, in this paper, we raised the concept of histo-variogram based on the analysis of the characteristics of other spatial analyzing methods such as variogram, information entropy. And we also raised a new spatial analysis method of histogram decomposition based on the definition of standing pixel and contour pixel. At the end of this paper, we demonstrated the characteristics of histo-variogram by two experiments, one for spatial analysis, the other for image fusion.

Keywords

histo-variogram scaling histogram-decomposition standing-pixel HIS transform 

References

  1. 1.
    Li Xiaowen, Wang Jindi, Hu Baoxin et al., On utilization of prior knowledge in inversion of remote sensing model, Science in China, Ser. D, 1998, 41(6): 580–586.CrossRefGoogle Scholar
  2. 2.
    Li Xiaowen, Wang Jindi, Strahler, A. H., Scale effects of Planck law over non-isothermal blackbody surface, Science in China, Ser. E, 1999, 42(6): 652–656.CrossRefGoogle Scholar
  3. 3.
    Li Xiaowen, Wang Jindi, Strahler, A. H., Scale effects and scaling-up by geometric-optical model, Science in China, Ser. E, 2000, 43(supp.): 17–22.CrossRefGoogle Scholar
  4. 4.
    Woodcock, C. E., Jupp, D. L. B., The use of variograms in remote sensing: I. Scene models and simulated images, Remote Sensing of Environment, 1988, 25: 323–348.CrossRefGoogle Scholar
  5. 5.
    Webster, R., Quantitative spatial analysis of soil in the field, Advances in Soil Science, 1985, 3: 1–70.Google Scholar
  6. 6.
    Warren, B. C., Thomas, A. S., Bradshaw, G. A., Semivariograms of digital imagery for analysis of conifer canopy structure, Remote Sensing of Environment, 1990, 34: 167–178.CrossRefGoogle Scholar
  7. 7.
    Jupp, D. L. B., Strahler, A. H., Woodcock, C. E., Autocorrelation and regularization in digital images: II. Simple image models, IEEE Transactions on Geoscience and Remote Sensing, 1989, 27(3): 247–258.CrossRefGoogle Scholar
  8. 8.
    Li Xiaowen, Strahler, A. H., Geometric-optimal modeling of a conifer forest canopy, IEEE Transactions on Geoscience and Remote Sensing, 1985, GE-23: 705–721.CrossRefGoogle Scholar
  9. 9.
    Woodcock, C. E., Strahler, A. H., Jupp, D. L. B., The use of variograms in remote sensing: II. Real digital images, Remote Sensing of Environment, 1988, 25: 349–379.CrossRefGoogle Scholar
  10. 10.
    Plotnick, R. E., Gardner, R. H., O’Neill, R. V., Lacunarity indices as measures of landscape texture, Landscape Ecology, 1993, 8(3): 201–211.CrossRefGoogle Scholar
  11. 11.
    Zeng, H., Shao, N., Guo, Q. H., A study of landscape heterogeneity for the Changping area in the eastern part of Zhujiang Delta, Acta Geographica Sinica, 1999, 54(3): 255–261.Google Scholar
  12. 12.
    Mandelbrot, B. B., Fractal Geometry in the Nature (in Chinese), Shanghai: Shanghai Far East Publishing House, 1998.Google Scholar
  13. 13.
    Zhu Qijiang, Rong Taizong, Sun Rui, A case study on fractal simulation of forest fire spread, Science in China, Ser. E, 2000, 43(supp.): 104–112.CrossRefGoogle Scholar
  14. 14.
    Zhang, X., Drake, N. A., Wainwright, J., Scaling Issues in Environmental Modeling, in Environmental Modeling: Finding Simplicity in Complexity, Chichester: John Wiley & Sons, 2002, (in press).Google Scholar
  15. 15.
    Lam, N., Description and measurement of Landsat TM images using fractals, Photogrammetric Engineering and Remote Sensing, 1990, 56: 187–195.Google Scholar
  16. 16.
    Schetselaar, E. M., Fusion by the HIS transform: Should we use cylindrical or spherical coordinates? INT. J. Remote Sensing, 1998, 19(4): 759–765.CrossRefGoogle Scholar
  17. 17.
    Liu, J. G., Moore, J. McM., Pixel block intensity modulation: Adding spatial detail to TM band 6 thermal imagery, INT. J. Remote Sensing, 1998, 19(13): 2477–2491.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2002

Authors and Affiliations

  • Hao Zhang
    • 1
  • Ziti Jiao
    • 1
  • Hua Yang
    • 1
  • Xiaowen Li
    • 1
    • 2
  • Jindi Wang
    • 1
  • Lihong Su
    • 1
  • Guangjian Yan
    • 1
  • Hongrui Zhao
    • 1
  1. 1.Research Center for Remote Sensing and GIS, Department of Geography and Beijing Key Laboratory for Remote Sensing of Environment and Digital CitiesBeijing Normal UniversityBeijingChina
  2. 2.Center for Remote Sensing and Department of GeographyBoston UniversityUSA

Personalised recommendations