Skip to main content
Log in

Raman microspectroscopic study of biomolecular structure inside living adhesive cells

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Cells adhesion is very important for many physiological processes. Using advanced Raman microspectroscopic technique, we selected T Leukemia cells (Jurkat) as the materials and obtained simultaneously conformation information of various biomolecules inside the whole living cells. By comparing the Raman microspectroscopic spectra of single and adhesive cancer cells, we found for the first time that when cells adhered, the conformation of the biomolecules (DNA, protein, carbohydrates and lipids) inside the cells had different changes: (i) the backbone of double-stranded DNA maintained orderly B-form or modified B-form conformation, whereas the groups of its deoxyribose and bases were modified; (ii) the conformational changes of the main chain and the side chain in the protein were obviously variant. The lines intensity belonging to α-helix and β-sheet decreased, while that of β-turn increased. Tyrosine and tryptophane residues of the protein changed from “buried state” to “exposed state”; the lines intensity of its sulfhydryl group also increased; the conformation of its disulfide bond changed from two kinds to three kinds. These facts suggest that the cells adhesion causes changes in H-bonds organization of the main chain and environment of the side chain in the protein; (iii) the groups of the carbohydrates were also modified simultaneously; (iv) the conformation of the lipids bilayers of the membranes changed obviously; the order parameter for lateral interaction between chains decreased gradually with the increase of number of the adhesive cells. So cells adhesion resulted in an increase in fluidity of the membrane and ion permeability on the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trinkaus, J. P., Cells into Organs: The Forces that Shape the Embryo, 2nd ed., New Jersey: Prentice-Hall Inc., 1984, 69–71.

    Google Scholar 

  2. Maheshwari, G., Wells, A., Griffith, L.G. et al., Biophysical integration of effects of epidermal growth factor and fibronectin on fibroblast migration, Biophy. J., 1997, 76: 2814–2823.

    Article  Google Scholar 

  3. Neelamegham, S., Munn, L. L., Zygourakis, K., A model for kinetics of homotypic cellular aggregation under static conditions, Biophy. J., 1997, 72: 51–64.

    CAS  Google Scholar 

  4. Lampugnani, M. G., Dejana, E., Interendothelial junctions: structure, signalling and functional roles, Curr. Opin. Cell Biol., 1997, 9: 674–682.

    Article  PubMed  CAS  Google Scholar 

  5. Vasioukhin, V., Christoph, B., Mei, Y. et al., Directed actin polymerization is the driving force for epithelial cell-cell adhesion, Cell, 2000, 100: 209–219.

    Article  PubMed  CAS  Google Scholar 

  6. Milier, J. R., Moon, R. T., Signal transduction though β-catenin and specification of cell fate during embryogenesis, Genes Dev., 1996, 10: 2527–2539.

    Article  Google Scholar 

  7. Peifer, M., Cell adhesion and signal transduction: the armadillo connection, Trends Cell Biol., 1995, 5: 224–229.

    Article  PubMed  CAS  Google Scholar 

  8. Gumbiner, B. M., Cell adhesion: the molecular basis of tissue architecture and morphogenesis, Cell, 1996, 84: 345–357.

    Article  PubMed  CAS  Google Scholar 

  9. Gurdon, G. B., A community effect in animal development, Nature, 1983, 336: 772–774.

    Article  Google Scholar 

  10. Zhuang, X. H., Cell sociology, in The Frontiers of Life Science Facing the 21th Century. (eds. Li, B. J. et al.), Guangdong: Guangdong Sci. and Tech. Press, 1996, 279–290.

    Google Scholar 

  11. Terzaghi-Howe, M., Inhibition of carcinogen-altered rat trachea epithelial cells proliferation by normal epithelial cells in vivo, Carcinogenesis, 1987, 8: 145–150.

    Article  PubMed  CAS  Google Scholar 

  12. Cal, C., Freije, J. M. P., Lopez, J. M. et al., ADAM 23/MDC3, a human disintegrin that promotes cell adhesion via interaction with the alpha v beta 3 integrin through an RGD-independent mechanism, Mole. Biol. Cell, 2000, 11: 1457–1469.

    CAS  Google Scholar 

  13. Baumgartner, W., Hinterdorfer, P., Ness, W. et al., Cadherin interaction probed by atomic force microscopy, Proc. Natl. Acad. Sci. USA, 2000, 97: 4005–4010.

    Article  PubMed  CAS  Google Scholar 

  14. Wilkemeyer, W. F., Sebastian, A. B., Smith, S. A. et al., Antagonists of alcohol inhibition of cell adhesion, Proc. Natl. Acad. Sci. USA, 2000, 97: 3690–3695.

    Article  PubMed  CAS  Google Scholar 

  15. Greve, J., Puppels, G. J., Raman microspectroscopy of single whole cells, in Biomolecular Spectroscopy (eds. Clark, R. J. H., Hester, R. E.), Part A, Vol. 20, London: Wiley, 1993, 231–265.

    Google Scholar 

  16. Goodwin, D. C., Brahms, J., Form of DNA and the nature of interactions with protein in chromatin, Nucleic Acids Res., 1978, 5(3): 835–850.

    Article  PubMed  CAS  Google Scholar 

  17. Xu, Y. M., Zhou, Z. X., Yang, H. Y. et al., Raman spectroscopic study of microcosmic photodamage of the space structure of DNA sensitized by Yangzhou haematoporphyrin derivative and photofrin II, Int. J. Photochem & Photobiol., B: Biol., 1999, 52: 30–34.

    Article  CAS  Google Scholar 

  18. Thomas, G. J. Jr., Kyogoku, Y., Biological science, in Infrared and Raman Spectroscopy (eds. Bram, E. G., Grasselli, J. G.), Part C, Maryland: Marcel Dekker, Inc., 1977, 717–872.

    Google Scholar 

  19. Carey, P. R., Biochemical Applications of Raman and Resonance Raman Spectroscopies, New York: A Subsidiary of Harcourt Brace Jovanovich Publishers, 1982, 77–90.

  20. Lord, R.C., Yu, N. T., Laser-excited Raman spectroscopy of biomolecules (I) —Native lysozyme and constituent Amino acids, J. Mol. Biol., 1970, 50: 509–524.

    Article  PubMed  CAS  Google Scholar 

  21. Krimm, S., Bandekar, J., Vibrational analysis of peptides, polypeptides, and proteins (V) —Normal vibrations of β-turns, J. Biopolymers, 1980, 19: 1–29.

    Article  CAS  Google Scholar 

  22. Bandekar, J., Krimm, S., Vibrational analysis of peptides, polypeptides, and proteins (VI) —Assignment of β-turns Modes in insulin and other proteins, J. Biopolymers, 1980, 19: 31–36.

    Article  CAS  Google Scholar 

  23. Xu, Y. M., Yang, H. Y., Zhang, Z. Y., Raman spectroscopic study of space structure of membrane proteins and membrane lipids in photodamaged human erythrocyte sensitized by hypocrellin B, Science in China, Ser. C, 1998, 41(6): 608–616.

    Article  CAS  Google Scholar 

  24. Wu, C., Xu, Y. M., Fan, R., Interaction between fibrinokinase l-TPA and human fibrin containing profibrinolysin, Kexue-Tongbao, 1988, 33(7): 599–601.

    CAS  Google Scholar 

  25. Alberts, B., Bray, D., Lewis, J. et al., Molecular Biology of the Cell, 2nd ed., New York: Garland Publishing, Inc., London, 1989, 1–15.

    Google Scholar 

  26. Ichikawa, Y., Lin, Y.C., Dumas, D.P. et al., Chemical-enzymatic synthesis and conformational analysis of sialyl Lewis × and derivatives, J. Am. Chem., 1992, 114: 9283–9298.

    Article  CAS  Google Scholar 

  27. She, C.Y., Dinh, N. D., Tu, A. T., Laser Raman scattering of glucosamine, N-acetylglucosamine and glucuronic acid, Biochim. Biophys. Acta, 1974, 372: 345–357.

    CAS  Google Scholar 

  28. Zhao, H. X., Xu, Y. M., Lu, C. Z., Raman spectroscopic study of D-Mannose after the photosensitive damage caused by hypericin, Asian J. Spectroscopy, 1997, 1: 71–76.

    CAS  Google Scholar 

  29. Tu, A. T., Raman Spectroscopy in Biology: Principles and Applications, New York: John Wiley, 1982, 236–240.

    Google Scholar 

  30. Gaber, B. P., Peticalas, W. L., On the quantitative interpretation of biomembrane structure by Raman spectroscopy, Biochim. Biophys. Acta, 1977, 465: 260–274.

    Article  PubMed  CAS  Google Scholar 

  31. Xu, Y. M., Zhao, H. X., Zhang, Z. Y., Raman spectroscopic study of microcosmic and photosensitive damage on the liposomes of the mixed phospholipids sensitized by hypocrellin and its derivatives, Int. J. Photochem. & Photobiol., B: Biol., 1998, 43: 41–46.

    Article  CAS  Google Scholar 

  32. Xu, Y. M., Yang, H. Y., Yan, Y. C. et al., Raman spectroscopic study of photodamage on the space structure of DL-α-phosphatidylcholine liposomes sensitized by hypocrellin B, Int. J. Photochem. & Photobiol. B: Biol., 1998, 45: 179–183.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Yang, H., Xu, Y. et al. Raman microspectroscopic study of biomolecular structure inside living adhesive cells. Sci. China Ser. C.-Life Sci. 45, 397–405 (2002). https://doi.org/10.1360/02yc9044

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02yc9044

Keywords

Navigation