Advertisement

Science in China Series C: Life Sciences

, Volume 46, Issue 5, pp 449–463 | Cite as

The Smad pathway in transforming growth factor-β signaling

Article
  • 26 Downloads

Abstract

The Smad pathway is involved in transforming growth factor-β (TGF-β) signal transduction. The Smad complex binds with the promoter of target gene to modulate gene transcription. Various transcriptional coactivators and corepressors associate directly with Smads for appropriate binding of Smads to target promoters and regulation of Smads transcriptional activities. The ultimate degradation of Smads mediated by the ubiquitin-proteasome pathway (UPP) has been established as a mechanism to shut off the Smad pathway. In addition to the Smad pathway, TGF-β can also activate other signaling pathway such as the MAPK pathway. The cross-talk of the Smad pathway with other signaling pathways constitutes an important mechanism for the regulatory network of TGF-β signaling.

Keywords

TGF-β signaling Smad Smad pathway MAPK pathway UPP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Massague, J., TGF-β signal transduction, Annu. Rev. Biochem., 1998, 67: 753–791.PubMedCrossRefGoogle Scholar
  2. 2.
    Balemans, W., Van Hul, W., Extracellular regulation of BMP signaling in vertebrates: A cocktail of modulators, Dev. Biol., 2002, 250(2): 231.PubMedGoogle Scholar
  3. 3.
    Iwamoto, T., Oshima, K., Seng, T. et al., STAT and SMAD signaling in cancer, Histol. Histopathol., 2002, 17(3): 887–895.PubMedGoogle Scholar
  4. 4.
    Ten Dijke, P., Goumans, M. J., Itoh, F. et al., Regulation of cell proliferation by Smad proteins, J. Cell. Physiol., 2002, 191(1): 1–16.PubMedCrossRefGoogle Scholar
  5. 5.
    Mathews, L. S., Vale, W. W., Expression cloning of an activin receptor, a predicted transmembrane serine kinase, Cell, 1991, 65(6): 973–982.PubMedCrossRefGoogle Scholar
  6. 6.
    Lin, H. Y., Wang, X. F., Ng-Eaton, E. et al., Expression cloning of the TGF-β type II receptor, a functional transmembrane serine/threonine kinase, Cell, 1992, 68(4): 775–785.PubMedCrossRefGoogle Scholar
  7. 7.
    Wrana, J. L., Attisano, L., The Smad pathway, Cytokine Growth Factor Rev., 2000, 11(1-2): 5–13.PubMedCrossRefGoogle Scholar
  8. 8.
    Wrana, J. L., Attisano, L., Wieser, R. et al., Mechanism of activation of the TGF-β receptor, Nature, 1994, 370(6488): 341–347.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhu, H. J., Burgess, A. W., Regulation of transforming growth factor-β signaling, Mol. Cell. Biol. Res. Commun., 2001, 4(6): 321–330.PubMedCrossRefGoogle Scholar
  10. 10.
    Lux, A., Attisano, L., Marchuk, D. A., Assignment of transforming growth factor β1 and β3 and a third new ligand to the type I receptor ALK-1, J. Biol. Chem., 1999, 274(15): 9984–9992.PubMedCrossRefGoogle Scholar
  11. 11.
    Barbara, N. P., Wrana, J. L., Letarte, M., Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-β superfamily, J. Biol. Chem., 1999, 274(2): 584–594.PubMedCrossRefGoogle Scholar
  12. 12.
    Zwaagstra, J. C., El-Alfy, M., O’Connor-McCourt, M. D., Transforming growth factor (TGF)-β 1 internalization: Modulation by ligand interaction with TGF-β receptors types I and II and a mechanism that is distinct from clathrin-mediated endocytosis, J. Biol. Chem., 2001, 276(29): 27237–27245.PubMedCrossRefGoogle Scholar
  13. 13.
    Zwaagstra, J. C., Guimond, A., O’Connor-McCourt, M. D., Predominant intracellular localization of the type I transforming growth factor-β receptor and increased nuclear accumulation after growth arrest, Exp. Cell Res., 2000, 258(1): 121–134.PubMedCrossRefGoogle Scholar
  14. 14.
    Wakefield, L. M., Piek, E., Bottinger, E. P., TGF-β signaling in mammary gland development and tumorigenesis, J. Mammary Gland Biol. Neoplasia, 2001, 6(1): 67–82.PubMedCrossRefGoogle Scholar
  15. 15.
    Dennler, S., Goumans, M. J., ten Dijke, P., Transforming growth factor β signal transduction, J. Leukoc. Biol., 2002, 71(5): 731–740.PubMedGoogle Scholar
  16. 16.
    de Caestecker, M. P., Piek, E., Roberts, A. B., Role of transforming growth factor-β signaling in cancer, J. Natl. Cancer Inst., 2000, 92(17): 1388–1402.PubMedCrossRefGoogle Scholar
  17. 17.
    Raftery, L. A., Twombly, V., Wharton, K. et al., Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila, Genetics, 1995, 139(1): 241–254.PubMedGoogle Scholar
  18. 18.
    Sekelsky, J. J., Newfeld, S. J., Raftery, L. A. et al., Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster, Genetics, 1995, 139(3): 1347–1358.PubMedGoogle Scholar
  19. 19.
    Savage, C., Das, P., Finelli, A. L. et al., Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor β pathway components, Proc. Natl. Acad. Sci. U.S.A., 1996, 93(2): 790–794.PubMedCrossRefGoogle Scholar
  20. 20.
    Derynck, R., Gelbart, W. M., Harland, R. M. et al., Nomenclature: Vertebrate mediators of TGFβ family signals, Cell, 1996, 87(2): 173.PubMedCrossRefGoogle Scholar
  21. 21.
    Chen, W., Fu, X., Sheng, Z., Review of current progress in the structure and function of Smad proteins, Chin. Med. J., 2002, 115(3): 446–450.PubMedGoogle Scholar
  22. 22.
    Moustakas, A., Souchelnytskyi, S., Heldin, C. H., Smad regulation in TGF-β signal transduction, J. Cell Sci., 2001, 114(Pt 24): 4359–4369.PubMedGoogle Scholar
  23. 23.
    Lo, R. S., Chen, Y. G., Shi, Y. et al., The L3 loop: A structural motif determining specific interactions between SMAD proteins and TGF-β receptors, EMBO. J., 1998, 17(4): 996–1005.PubMedCrossRefGoogle Scholar
  24. 24.
    Shi, Y., Hata, A., Lo, R. S. et al., A structural basis for mutational inactivation of the tumour suppressor Smad4, Nature, 1997, 388(6637): 87–93.PubMedCrossRefGoogle Scholar
  25. 25.
    Maurice, D., Pierreux, C. E., Howell, M. et al., Loss of Smad4 function in pancreatic tumors: C-terminal truncation leads to decreased stability, J. Biol. Chem., 2001, 276(46): 43175–43181.PubMedCrossRefGoogle Scholar
  26. 26.
    Zimmerman, C. M., Padgett, R. W., Transforming growth factor β signaling mediators and modulators, Gene, 2000, 249(1-2): 17–30.PubMedCrossRefGoogle Scholar
  27. 27.
    Kretzschmar, M., Doody, J., Timokhina, I. et al., A mechanism of repression of TGFβ/Smad signaling by oncogenic Ras, Genes Dev., 1999, 13(7): 804–816.PubMedCrossRefGoogle Scholar
  28. 28.
    Souchelnytskyi, S., Tamaki, K., Engstrom, U. et al., Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-β signaling, J. Biol. Chem., 1997, 272(44): 28107–28115.PubMedCrossRefGoogle Scholar
  29. 29.
    Hata, A., Lo, R. S., Wotton, D. et al., Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4, Nature, 1997, 388(6637): 82–87.PubMedCrossRefGoogle Scholar
  30. 30.
    de Caestecker, M. P., Parks, W. T., Frank, C. J. et al., Smad2 transduces common signals from receptor serine-threonine and tyrosine kinases, Genes Dev., 1998, 12(11): 1587–1592.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhu, H., Kavsak, P., Abdullah, S. et al., A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation, Nature, 1999, 400(6745): 687–693.PubMedCrossRefGoogle Scholar
  32. 32.
    de Caestecker, M. P., Yahata, T., Wang, D. et al., The Smad4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain, J. Biol. Chem., 2000, 275(3): 2115–2122.PubMedCrossRefGoogle Scholar
  33. 33.
    Bauer, M., Schuppan, D., TGFβl in liver fibrosis: Time to change paradigms? FEBS. Lett., 2001, 502(1–2): 1–3.PubMedCrossRefGoogle Scholar
  34. 34.
    Tsukazaki, T., Chiang, T. A., Davison, A. F. et al., SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor, Cell, 1998, 95(6): 779–791.PubMedCrossRefGoogle Scholar
  35. 35.
    Burd, C. G., Emr, S. D., Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains, Mol. Cell, 1998, 2(1): 157–162.PubMedCrossRefGoogle Scholar
  36. 36.
    Correia, J. J., Chacko, B. M., Lam, S. S. et al., Sedimentation studies reveal a direct role of phosphorylation in Smad3:Smad4 homoand hetero-trimerization, Biochemistry, 2001, 40(5): 1473–1482.PubMedCrossRefGoogle Scholar
  37. 37.
    Tada, K., Inoue, H., Ebisawa, T. et al., Region between a-helices 3 and 4 of the mad homology 2 domain of Smad4: Functional roles in oligomer formation and transcriptional activation, Genes Cells, 1999, 4(12): 731–741.PubMedCrossRefGoogle Scholar
  38. 38.
    Xiao, Z., Liu, X., Henis, Y. I. et al., A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation, Proc. Natl. Acad. Sci. U.S.A., 2000, 97(14): 7853–7858.PubMedCrossRefGoogle Scholar
  39. 39.
    Liu, F., Pouponnot, C., Massague, J., Dual role of the Smad4/DPC4 tumor suppressor in TGFβ-inducible transcriptional complexes, Genes Dev, 1997, 11(23): 3157–3167.PubMedCrossRefGoogle Scholar
  40. 40.
    Wells, R. G., Fibrogenesis, V., TGF-β signaling pathways, Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 279(5): G845–850.PubMedGoogle Scholar
  41. 41.
    Chen, C. R., Kang, Y., Massague, J., Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor β growth arrest program, Proc. Natl. Acad. Sci. U.S.A., 2001, 98(3): 992–999.PubMedCrossRefGoogle Scholar
  42. 42.
    Feng, X. H., Lin, X., Derynck, R., Smad2, Smad3 and Smad4 cooperate with Spl to induce pl5 (Ink4B) transcription in response to TGF-β, EMBO. J., 2000, 19(19): 5178–5193.PubMedCrossRefGoogle Scholar
  43. 43.
    Pardali, K., Kurisaki, A., Moren, A. et al., Role of Smad proteins and transcription factor Spl in p21(Wafl/Cipl) regulation by transforming growth factor-β, J. Biol. Chem., 2000, 275(38): 29244–29256.PubMedCrossRefGoogle Scholar
  44. 44.
    White, L. A., Mitchell, T. I., Brinckerhoff, C. E., Transforming growth factor β inhibitory element in the rabbit matrix metalloproteinase-1 (collagenase-1) gene functions as a repressor of constitutive transcription, Biochim. Biophys. Acta, 2000, 1490(3): 259–268.PubMedGoogle Scholar
  45. 45.
    Zawel, L., Dai, J. L., Buckhaults, P. et al., Human Smad3 and Smad4 are sequence-specific transcription activators, Mol. Cell, 1998, 1(4): 611–617.PubMedCrossRefGoogle Scholar
  46. 46.
    Kusanagi, K., Kawabata, M., Mishima, H. K. et al., α-helix 2 in the amino-terminal mad homology 1 domain is responsible for specific DNA binding of Smad3, J. Biol. Chem., 2001, 276(30): 28155–28163.PubMedCrossRefGoogle Scholar
  47. 47.
    Yagi, K., Goto, D., Hamamoto, T. et al., Alternatively spliced variant of Smad2 lacking exon 3. Comparison with wild-type Smad2 and Smad3, J. Biol. Chem., 1999, 274(2): 703–709.PubMedCrossRefGoogle Scholar
  48. 48.
    Labbe, E., Silvestri, C., Hoodless, P. A. et al., Smad2 and Smad3 positively and negatively regulate TGF β-dependent transcription through the forkhead DNA-binding protein FAST2, Mol. Cell, 1998, 2(1): 109–120.PubMedCrossRefGoogle Scholar
  49. 49.
    Chen, X., Weisberg, E., Fridmacher, V. et al., Smad4 and FAST-1 in the assembly of activin-responsive factor, Nature, 1997, 389(6646): 85–89.PubMedCrossRefGoogle Scholar
  50. 50.
    Itoh, S., Itoh, F., Goumans, M. J. et al., Signaling of transforming growth factor-β family members through Smad proteins, Eur. J. Biochem., 2000, 267(24): 6954–6967.PubMedCrossRefGoogle Scholar
  51. 51.
    Wong, C., Rougier-Chapman, E. M., Frederick, J. P. et al., Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor β, Mol. Cell. Biol., 1999, 19(3): 1821–1830.PubMedGoogle Scholar
  52. 52.
    Hanai, J., Chen, L. F., Kanno, T. et al., Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Cα promoter, J. Biol. Chem., 1999, 274(44): 31577–31582.PubMedCrossRefGoogle Scholar
  53. 53.
    Hata, A., Seoane, J., Lagna, G. et al., OAZ uses distinct DNA-and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways, Cell, 2000, 100(2): 229–240.PubMedCrossRefGoogle Scholar
  54. 54.
    Yanagisawa, J., Yanagi, Y., Masuhiro, Y. et al., Convergence of transforming growth factor-β and vitamin D signaling pathways on SMAD transcriptional coactivators, Science, 1999, 283(5406): 1317–1321.PubMedCrossRefGoogle Scholar
  55. 55.
    Hua, X., Liu, X., Ansari, D. O. et al., Synergistic cooperation of TFE3 and smad proteins in TGF-β-induced transcription of the plasminogen activator inhibitor-1 gene, Genes Dev., 1998, 12(19): 3084–3095.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang, W., Liu, H. T., MAPK signal pathways in the regulation of cell proliferation in mammalian cells, Cell Res., 2002, 12(1): 9–18.PubMedCrossRefGoogle Scholar
  57. 57.
    Kaji, H., Canaff, L., Lebrun, J. J. et al., Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type β signaling, Proc. Natl. Acad. Sci. U.S.A., 2001, 98(7): 3837–3842.PubMedCrossRefGoogle Scholar
  58. 58.
    Liberati, N. T., Moniwa, M., Borton, A. J. et al., An essential role for Mad homology domain 1 in the association of Smad3 with histone deacetylase activity, J. Biol. Chem., 2001, 276(25): 22595–22603.PubMedCrossRefGoogle Scholar
  59. 59.
    Zimmerman, C. M., Kariapper, M. S., Mathews, L. S., Smad proteins physically interact with calmodulin, J. Biol. Chem., 1998, 273(2): 677–680.PubMedCrossRefGoogle Scholar
  60. 60.
    Stroschein, S. L., Wang, W., Zhou, S. et al., Negative feedback regulation of TGF-β signaling by the SnoN oncoprotein, Science, 1999, 286(5440): 771–774.PubMedCrossRefGoogle Scholar
  61. 61.
    Leong, G. M., Subramaniam, N., Figueroa, J. et al., Ski-interacting protein interacts with Smad proteins to augment transforming growth factor-β-dependent transcription, J. Biol. Chem., 2001, 276(21): 18243–18248.PubMedCrossRefGoogle Scholar
  62. 62.
    Hata, A., Lagna, G., Massague, J. et al., Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor, Genes Dev., 1998, 12(2): 186–197.PubMedCrossRefGoogle Scholar
  63. 63.
    Kimura, N., Matsuo, R., Shibuya, H. et al., BMP2-induced apoptosis is mediated by activation of the TAKl-p38 kinase pathway that is negatively regulated by Smad6, J. Biol. Chem., 2000, 275(23): 17647–17652.PubMedCrossRefGoogle Scholar
  64. 64.
    Kavsak, P., Rasmussen, R. K., Causing, C. G. et al., Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF β receptor for degradation, Mol. Cell, 2000, 6(6): 1365–1375.PubMedCrossRefGoogle Scholar
  65. 65.
    Ebisawa, T., Fukuchi, M., Murakami, G. et al., Smurfl interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation, J. Biol. Chem., 2001, 276(16): 12477–12480.PubMedCrossRefGoogle Scholar
  66. 66.
    Lin, X., Liang, M., Feng, X. H., Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-β signaling, J. Biol. Chem., 2000, 275(47): 36818–36822.PubMedCrossRefGoogle Scholar
  67. 67.
    Bonni, S., Wang, H. R., Causing, C. G. et al., TGF-β induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation, Nat. Cell. Biol., 2001, 3(6): 587–595.PubMedCrossRefGoogle Scholar
  68. 68.
    Fukuchi, M., Imamura, T., Chiba, T. et al., Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins, Mol. Biol. Cell., 2001, 12(5): 1431–1443.PubMedGoogle Scholar
  69. 69.
    Mulder, K. M., Role of Ras and Mapks in TGFβ signaling, Cytokine Growth Factor Rev, 2000, 11(1-2): 23–35PubMedCrossRefGoogle Scholar
  70. 70.
    Attisano, L., Wrana, J. L., Signal transduction by the TGF-β superfamily, Science, 2002, 296(5573): 1646–1647.PubMedCrossRefGoogle Scholar
  71. 71.
    Hu, P. P., Shen, X., Huang, D. et al., The MEK pathway is required for stimulation of p21(WAFl/CIPl) by transforming growth factor-β, J. Biol. Chem., 1999, 274(50): 35381–35387.PubMedCrossRefGoogle Scholar
  72. 72.
    Lehmann, K., Janda, E., Pierreux, C. E. et al., Raf induces TGFβ production while blocking its apoptotic but not invasive responses: Amechanism leading to increased malignancy in epithelial cells, Genes Dev., 2000, 14(20): 2610–2622.PubMedCrossRefGoogle Scholar
  73. 73.
    Hocevar, B. A., Brown, T. L., Howe, P. H., TGF-β induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway, EMBO. J., 1999, 18(5): 1345–1356.PubMedCrossRefGoogle Scholar
  74. 74.
    Axmann, A., Seidel, D., Reimann, T. et al., Transforming growth factor-β1-induced activation of the Raf-MEK-MAPK signaling pathway in rat lung fibroblasts via a PKC-dependent mechanism, Biochem. Biophys. Res. Commun., 1998, 249(2): 456–460.PubMedCrossRefGoogle Scholar
  75. 75.
    Wakefield, L. M., Roberts, A. B., TGF-β signaling: Positive and negative effects on tumorigenesis, Curr. Opin. Genet. Dev., 2002, 12(1): 22–29.PubMedCrossRefGoogle Scholar
  76. 76.
    Brunet, A., Datta, S. R., Greenberg, M. E., Transcription-dependent and independent control of neuronal survival by the PI3K-Akt signaling pathway, Curr. Opin. Neurobiol., 2001, 11(3): 297–305.PubMedCrossRefGoogle Scholar
  77. 77.
    Vinals, F., Pouyssegur, J., Transforming growth factor βl (TGF-βl) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-α signaling, Mol. Cell. Biol., 2001, 21(21): 7218–7230.PubMedCrossRefGoogle Scholar
  78. 78.
    Bakin, A. V., Tomlinson, A. K., Bhowmick, N. A. et al., Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration, J. Biol. Chem., 2000, 275(47): 36803–36810.PubMedCrossRefGoogle Scholar
  79. 79.
    Iglesias, M., Frontelo, P., Gamallo, C. et al., Blockade of Smad4 in transformed keratinocytes containing a Ras oncogene leads to hyperactivation of the Ras-dependent Erk signalling pathway associated with progression to undifferentiated carcinomas, Oncogene, 2000, 19(36): 4134–4145.PubMedCrossRefGoogle Scholar
  80. 80.
    Saha, D., Datta, P. K., Beauchamp, R. D., Oncogenic ras represses transforming growth factor-β /Smad signaling by degrading tumor suppressor Smad4, J. Biol. Chem., 2001, 276(31): 29531–29537.PubMedCrossRefGoogle Scholar
  81. 81.
    Lo, R. S., Wotton, D., Massague, J., Epidermal growth factor signaling via Ras controls the Smad transcriptional co-repressor TGIF, EMBO. J., 2001, 20(1-2): 128–136.PubMedCrossRefGoogle Scholar
  82. 82.
    Engel, M. E., McDonnell, M. A., Law, B. K. et al., Interdependent SMAD and JNK signaling in transforming growth factor-β-mediated transcription, J. Biol. Chem., 1999, 274(52): 37413–37420.PubMedCrossRefGoogle Scholar
  83. 83.
    Liu, X., Yue, J., Frey, R. S. et al., Transforming growth factor β signaling through Smad1 in human breast cancer cells, Cancer Res., 1998, 58(20): 4752–4757.PubMedGoogle Scholar
  84. 84.
    Yue, J., Frey, R. S., Mulder, K. M., Cross-talk between the Smadl and Ras/MEK signaling pathways for TGFβ, Oncogene, 1999, 18(11): 2033–2037.PubMedCrossRefGoogle Scholar
  85. 85.
    Ulloa, L., Doody, J., Massague, J., Inhibition of transforming growth factor-β/SMAD signalling by the interferon-y/STAT pathway, Nature, 1999, 397(6721): 710–713.PubMedCrossRefGoogle Scholar
  86. 86.
    Nakashima, K., Yanagisawa, M., Arakawa, H. et al., Synergistic signaling in fetal brain by STAT3-Smadl complex bridged by p300, Science, 1999, 284(5413): 479–482.PubMedCrossRefGoogle Scholar
  87. 87.
    Ghosh, A. K., Yuan, W., Mori, Y. et al., Antagonistic regulation of type I collagen gene expression by interferon-λ and transforming growth factor-β. Integration at the level of p300/CBP transcriptional coactivators, J. Biol. Chem., 2001, 276(14): 11041–11048.PubMedCrossRefGoogle Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  1. 1.State Key Laboratory of Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina

Personalised recommendations