Science in China Series C: Life Sciences

, Volume 47, Issue 1, pp 18–24 | Cite as

Mechanism of cellobiose inhibition in cellulose hydrolysis by cellobiohydrolase

Article
  • 144 Downloads

Abstract

An experimental study of cellobiose inhibition in cellulose hydrolysis by synergism of cellobiohydrolyse I and endoglucanase I is presented. Cellobiose is the structural unit of cellulose molecules and also the main product in enzymatic hydrolysis of cellulose. It has been identified that cellobiose can strongly inhibit hydrolysis reaction of cellulase, whereas it has no effect on the adsorption of cellulase on cellulose surface. The experimental data of FT-IR spectra, fluorescence spectrum and circular dichroism suggested that cellobiose can be combined with tryptophan residue located near the active site of cellobiohydrolase and then form steric hindrance, which prevents cellulose molecule chains from diffusing into active site of cellulase. In addition, the molecular conformation of cellobiohydrolase changes after cellobiose binding, which also causes most of the non-productive adsorption. Under these conditions, microfibrils cannot be separated from cellulose chains, thus further hydrolysis of cellulose can hardly proceed.

Keywords

cellobiohydrolase cellobiose inhibition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beguin, P., Aubert, J. P., The biological degradation of cellulose, FEMS Microbiol. Rev., 1994, 13: 25–58.PubMedCrossRefGoogle Scholar
  2. 2.
    Ven Tilbeurgh, H., Loontiene, F. G., Engelborgs, Y. et al., Studies of the cellulolytic system of Trichoderma reesei QM 94014, Eur. J. Biochem., 1989, 184(3): 553–559.PubMedCrossRefGoogle Scholar
  3. 3.
    Lee, Y. H., Fan, L. T., Kinetic studies of enzymatic hydrolysis insoluble cellulose (II), Biotech. & Bioeng., 1983, 25: 959–966.Google Scholar
  4. 4.
    Tomme, P., Warren, R. A., Gillkes, N., Cellulose hydrolysis by bacteria and fungi, Adv. Microb. Physiol., 1995, 37: 1–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Divne, C., Stahlberg, J., Reinikaimen, T. et al., The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei, Science, 1994, 65: 524–528.CrossRefGoogle Scholar
  6. 6.
    Yan, B. X., Gao, P. J., Purification of two cellobiohydrolase from Trichoderma pseudokoningii S-38, Chinese Biochemical Journal (in Chinese), 1997, 13: 362–364.Google Scholar
  7. 7.
    Yan, B. X., Gao, P. J., Purification and intrinsic fluorescence properties of Endoglucanase from Trichoderma pseudokoningii S-38, Chinese Biochemical Journal (in Chinese), 1997, 13: 580–585.Google Scholar
  8. 8.
    Zhang, Y. X., Liu, J., Gao, P. J. et al., Structure investigation of cellobiohydrolase I from Trichoderma pseudokoningii S-38 with a scanning tunneling microscopy, Applied Physics A, 1998, 67: 483–485.CrossRefGoogle Scholar
  9. 9.
    Yan, B. X., Sun, Y. Q., Domain structure and conformation of a cellobiohydrolase from Trichoderma pseudokoningii, J. Protein. Chem., 1997, 16: 59–66.PubMedCrossRefGoogle Scholar
  10. 10.
    Yan, B. X., Sun, Y. S., Gao, P. J., Intrinsic fluorescece of endoglucanase and cellobiohydrolase from Trichoderma pseudokoningii S-38, J. Protein Chem., 1997, 7: 681–688.Google Scholar
  11. 11.
    Yan, B. X., Gao, P. J., Role of tryptophan residue in endoglucanase from Trichoderma pseudokoningii S-38, Chinese Journal of Biochemistry and Molecular Biology (in Chinese), 1998, 14: 181–185.Google Scholar
  12. 12.
    Wang, D., Qu, Y. B., Gao, P. J., Transglycosylation of extracellular glucosidase of T. pseudokoningii S38 and its function in cellulase biosynthesis, J. Gen. Appl. Microbiol., 1996, 42: 363–369.CrossRefGoogle Scholar
  13. 13.
    Palomen, H., Tenkanen, M., Linder, M., Dymanic interaction of Trichoderma reesei cellobiohydrolases Cella and Cel7 A and Cellulose at equilibrium and during hydrolysis, Appl. Environ. Microbiol., 1999, 65: 5229–5233.Google Scholar
  14. 14.
    Bikales, N. M., Segel, L., Cellulose and Cellulose Derivatives, New York: Wiley Interscience, 1986, 305–320.Google Scholar
  15. 15.
    Michell, A. J., Second-derivative, F. T-I., R spectra of native cellulose, Carbohydrate Research, 1990, 197: 53–60.CrossRefGoogle Scholar
  16. 16.
    Zhan, Y. Z., Chen, X. L., Liu, J. et al., Scanning tunneling microscopy of the ultrastructure of cotton fiber, Acta Biochimica et Biophysica Sinica (in Chinese), 2000, 31: 521–523.Google Scholar
  17. 17.
    Herner, M. L., Melnick, M. S., Rabinovich, M. L., Enhancement of the affinity of cellobiohydrolase I and its catalytic domain to cellulose in the presence of the reaction product-cellobiose, Biochemistry (Mosc), 1999, 64: 1012–1029.Google Scholar
  18. 18.
    Chen, H. L., Li, W. J., Molecule Enzymology (in Chinese), Beijing: The public Health Edit, 1983, 233–278.Google Scholar
  19. 19.
    Fersht, A., Stereochemistry of enzymatic reaction, in Enzyme Structure and Mechanism, 2nd ed., New York: W. H. Freeman and Company, 1985, 221.Google Scholar
  20. 20.
    Gao, P. J., Chen, G. J., Wang, T. H. et al., Non-hydrolytic disruption of crystalline structure of cellulose by cellulose-binding domain and linker sequence of cellobiohydrolase I from Penicillium Janthinellum, Acta Biochemical et Biophysica Sinica, 2001, 33: 13–18.Google Scholar
  21. 21.
    Xiao, Z. H., Gao, P. J., Qu, Y. B. et al., Cellulose-binding domain of endoglucanase III from Trichoderma reesei disrupting the structure of cellulose, Biotech. Letter, 2001, 23: 711–715.CrossRefGoogle Scholar
  22. 22.
    Teeri, T. T., Koivula, A., Linder, M. et al., Trichoderma reesei cellobiohydrolase: Why so efficient on crystalline cellulose? Biochemical Society Transactions, 1998, 26: 173–178.PubMedGoogle Scholar
  23. 23.
    Sinnott, M. L., The cellobiohydrolase of Trichoderma reesei: A review of indirect and direct evidence that their function is not just glycoside bond hydrolysis, Biochem. Soc. Trans., 1998, 26: 160–164.PubMedGoogle Scholar
  24. 24.
    VäLJamäe, D., Sild, V., Pettersson, G. et al., The initial Kinetics of hydrolysis by cellobiohydrolase I and II consistent with a cellulose surface-erosion model, Eur. J. Biochem., 1998, 253: 469–495.PubMedCrossRefGoogle Scholar
  25. 25.
    Lee, S. B., Park, K. H., Robyt, J. E., Inhibition of (3-glycosidases by a carbose analogues containing cellobiose and lactose structures, Carbohydrate Research, 2001, 331: 13–18.PubMedCrossRefGoogle Scholar
  26. 26.
    Medve, J., Stahlberg, J., Tjerneld, F., Isotherm for adsorption of cellobiohydrolase I and II from Trichoderma reesei on microcrystalline cellulose, Appl. Biochem. Biotech., 1997, 66: 39–56.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  1. 1.State Key Laboratory of Microbial TechnologyShandong UniversityJinanChina

Personalised recommendations