Science in China Series B: Chemistry

, Volume 45, Issue 3, pp 257–266 | Cite as

Quantum chemical study on the one-carbon unit transfer of imidazolinium

  • Kang Congmin 
  • Chuansong Qi
  • Dacheng FengEmail author
  • Zhengting Cai


One-carbon unit transfer reaction of folate cofactor model compound, 1-acetyl-2-methyl-imidazolinium, with 1,2-diaminobenzene has been studied theoretically with ONIOM method. The result shows that there are two pathways to complete this reaction because the imidazolinium ring has two breaking patterns. Both the two pathways have six steps. They are combination of two reactants, proton migration, break of five-membered ring, formation of benzimidazole derivate, another proton migration, and formation of final products. In each of the above pathways, the two proton migration steps have higher energy, which illuminate that the reaction is catalyzed by general acid-base. This fact agrees with the experimental results of enzymatic one-carbon unit transfer at oxidation level of formate.


folate cofactor model one-carbon unit transfer imidazolinium ONIOM method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huang, T., Wang, C., Maras, B. et al., Thermodynamic analysis of the binding of the polyglutamate chain of 5-formyltetrahydropteroylpolyglutamates to serine hydroxymethyltransferase, Biochemistry, 1998, 37: 13536–13542.CrossRefGoogle Scholar
  2. 2.
    Blakley, R. L., The Biochemistry of Folic Acid and Related Pteridines, Amsterdam: North-Holland Publishing Co., 1969, 15–28.Google Scholar
  3. 3.
    Kim, Y.-I., Folate and carcinogenesis: Evidence, mechanisms, and implications, J. Nutr. Biochem., 1999, 10: 66–88.CrossRefGoogle Scholar
  4. 4.
    Leary, R. P., Beaudette, N., Kisliuk, R. L., Interaction of deoxyuridylate with thymidylate synthetase, J. Biol. Chem., 1975, 250: 4864–4868.Google Scholar
  5. 5.
    Warren, L., Buchanan, J. M., 2-Amino-N-ribosylacetamide 5′-phosphate (glycinamide ribotide) transformylase, J. Biol. Chem., 1957, 229: 613–626.Google Scholar
  6. 6.
    Warren, L., Flaks, J. G., Buchanan, J. M., Integration of enzymatic transformylations, J. Biol. Chem., 1957, 229: 627–640.Google Scholar
  7. 7.
    Reinald, H., Pandit, U. K., A route to optically active octahydroindolo [2,3-a] quinolizines, Tetrahedron, 1992, 48: 6521–6528.CrossRefGoogle Scholar
  8. 8.
    Stoit, A. R., Pandit, U. K., An approach to deethyleburnamonine, Tetrahedron, 1989, 45: 849–853.CrossRefGoogle Scholar
  9. 9.
    Bieraugel, H., Plemp, R., Hiemstra, H. C. et al., Synthesis and carbon transfer reactions of N5, N10-methenyl and N5, N10-methylentetrahydrofolate models, Tetrahedron, 1983, 39: 3971–3979.CrossRefGoogle Scholar
  10. 10.
    Huizenga, R. H., van Wiltenburg, J., Bieraugel, H. et al., A synthetic strategy to the aspidosperma skeleton, Synthesis of the 21-epimer of 20-deethyl-3,17-dioxo-16-echoxycarbonyl-1-methylaspidospermidine, Tetrahedron, 1991, 47: 4165–4174.CrossRefGoogle Scholar
  11. 11.
    Chen Jianxin, Pan Jigang, Xia Chizhong, Mimicking of structure and propertied of tetrahydrofolic coenzyme and study on their substituted one-carbon unit transfer reactions, Acta Chim. Sinica, 1998, 56: 819–826.Google Scholar
  12. 12.
    Xia Chizhong, Zhao Bingjun, Zhou Peiwen, Synthesis of tetrahydrofolate coenzyme models, 1,2-dimethyl-3-m(p)-nitro-phenylsulfonyl imidazolinium iodide and their methyl-substituted one carbon unit transfer reactions, Chin. Sci. Bull., 1996, 41(2): 172–173.Google Scholar
  13. 13.
    Daniel, A. D., Scuseria, G. E., What is the best alternative to diagonalization of the Hamiltonian in large scale semiempirical calculations? J. Chem. Phys., 1999, 110: 1321–1329.CrossRefGoogle Scholar
  14. 14.
    Millam, J. M., Scuseria, G. E., Linear scaling conjugate gradient density matrix search as an alternative to diagonalization for first principles electronic structure calculations, J. Chem. Phys., 1997, 106: 5569–5574.CrossRefGoogle Scholar
  15. 15.
    Titmuss, S. J., Cummins, P. L., Bliznyuk, A. A., Comparison of linear-scaling semiempirical methods and combined quantum mechanical/molecular mechanical methods applied to enzyme reactions, Chem. Phys. Lett., 2000, 320: 169–176.CrossRefGoogle Scholar
  16. 16.
    York, D. M., Lee, T. -S., Yang, W., Parameterization and efficient implementation of a solvent model for linear-scaling semiempirical quantum mechanical calculations of biological macromolecules, Chem. Phys. Lett., 1996, 263: 297–304.CrossRefGoogle Scholar
  17. 17.
    Lee, T. -S., York, D. M., Yang, W., Linear-scaling semiempirical quantum calculations for macromolecules, J. Chem. Phys., 1996, 105: 2744–2747.CrossRefGoogle Scholar
  18. 18.
    Lewis, J. P., Carter, W. Jr., Hermans, J. et al., Active species for the ground-state complex of cytidine deaminase: A linear-scaling quantum mechanical investigation, J. Am. Chem. Soc., 1998, 120: 540–5410.Google Scholar
  19. 19.
    Malsubara, T., Sieber, S., Morokuma, K., A test of the new “integrated MO + MM” (IMOMM) method for the conformational energy of ethane and n-butane, Inter. J. Quantum Chem., 1996, 60: 1101–1109.CrossRefGoogle Scholar
  20. 20.
    Svensson, M., Humbel, S., Froese, R. D., ONIOM: A multilayered integrated MO+MM method for geometry optimizations and single point energy predictions, A test for Diels-Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition, J. Phys. Chem.,1996, 100: 19357–19363.CrossRefGoogle Scholar
  21. 21.
    Stewart, J. J. P., Optimization of parameters for semiempirical methods, II. Applications, J. Comput. Chem., 1989, 10: 221–264.CrossRefGoogle Scholar
  22. 22.
    Benkovics, J., On the Mechanism of action of folate-and biopterin-requiring enzymes, Ann. Rev. Biochem., 1980, 49: 227–251.CrossRefGoogle Scholar
  23. 23.
    Burdick, B. A., Benkovic, P. A., Benkovic, S. J., Studies on models for tetrahydrofolic acid, hydrolysis and melhoxyaminolysis of amidines, J. Am. Chem. Soc., 1977, 99: 5716–5725.CrossRefGoogle Scholar
  24. 24.
    Bullard, W. P., Farina, L. J., Farina, P. R. et al., Studies on models for tetrahydrofolic acid, kinetically significant transport process in general base catalyzed aminolysis of a formamidine, J. Am. Chem. Soc., 1974, 96: 7295–7302.CrossRefGoogle Scholar
  25. 25.
    Fife, T. H., Pellino, A. M., General-acid catalysis of imidazolidine ring opening, The hydrolysis of ethyl N, N-[1-(p-(dimethylamino) phenyl) propenediyl]-p-[((2-tetrahydroquinolinyl) methylene) amino] benzoate, J. Am. Chem. Soc., 1981, 103: 1201–1207.CrossRefGoogle Scholar
  26. 26.
    Fife, T. H., Pellino, A. M., General-acid-catalyzed imidazolidine ring opening, hydrolysis of symmetrical and unsymmetrical 1, 3-imidazolindine of p-dimethylaminocinnamaldehyde, J. Am. Chem. Soc., 1980, 102: 3062–3071.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2002

Authors and Affiliations

  • Kang Congmin 
    • 1
    • 2
  • Chuansong Qi
    • 1
  • Dacheng Feng
    • 1
  • Zhengting Cai
    • 1
  1. 1.Institute of Theoretical ChemistryShandong UniversityJinanChina
  2. 2.Department of Chemical EngineeringShandong Institute of Light IndustryJinanChina

Personalised recommendations