Advertisement

Chinese Science Bulletin

, Volume 48, Issue 21, pp 2288–2290 | Cite as

Structure properties for the superconductor MgCNi3 under high pressure with synchrotron radiation

  • Youlin Zhang
  • Fengying Li
  • Liangchen Chen
  • Jing Liu
  • Richeng Yu
  • Zhenxing Liu
  • Wen Yu
  • Changqing Jin
Reports
  • 14 Downloads

Abstract

In situ high pressure energy dispersive X-ray diffraction measurements on cubic-perovskite superconductor MgCNi3 under pressure up to 22 GPa have been performed by using diamond anvil cell with synchrotron radiation. We have investigated its crystal structure and compressibility. The results show that the structure of MgCNi3 is stable under pressure up to 22 GPa. According to Birch-Murnaghan state equation, when we assume B 0′ = 4, we get B0 = 267.8 ± 7.2 GPa.

Keywords

MgCNi3 superconductor synchrotron radiation high pressure energy dispersive X-ray diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nagamatsu, J., Naakagawa, N., Muranaka, T. et al., Superconductivity at 39 K in magnesium diboride, Nature, 2001, 410: 63–64.CrossRefGoogle Scholar
  2. 2.
    He, T., Huang, Q., Ramirez, A. P. et al., Superconductivity in the non-oxide perovskite MgCNi3, Nature, 2001, 411: 54–56.CrossRefGoogle Scholar
  3. 3.
    Yokoya, T., Kiss, T., Watanabe, T. et al., Ultrahigh-resolution phonoemission spectroscopy of Ni borocarbides: Direct observation of the superconducting gap and a change in gap anisotropy by impurity, Phys. Rev. Lett., 85: 4952–4955.Google Scholar
  4. 4.
    Hayward, M. A., Has, M. K., Ramirez, A. P. et al., The suppression of superconductivity in MgCNi3 by Ni site doping, Solid State Communications, 2001, 119: 491–495.CrossRefGoogle Scholar
  5. 5.
    Huang, Q., He, T., Regan, K. A. et al., Temperature of dependence of the structural parameters of the non-oxide perovskite superconductor MgCNi3, Physic C., 2001, 363: 215–218.CrossRefGoogle Scholar
  6. 6.
    Dugdale, S. B., Jarlborg, T., Electronic structure, magnetism and superconductivity of MgCxNi3, Phys. Rev. B, 2001, 64: 100508–100509.CrossRefGoogle Scholar
  7. 7.
    Shim, J. H., Min, B. I., Electronic structure of antiperovskite superconductors (X = B, C, N), Phys. Rev. B, 2001, 64: 180510–180511.CrossRefGoogle Scholar
  8. 8.
    Li, S. Y., Mo, W. Q., Yu, M. et al., Thermalpower and thermal conductivity of superconducting perovskite MgCNi3, Phys. Rev. B, 2002, 65: 064534–064535.CrossRefGoogle Scholar
  9. 9.
    Mao, Z. Q., Rosario, M. M., Nelson, K. et al., Tunneling spectrum and upper critical field of the intermetallic perovskite superconduct MgCNi3, J. Appl. Phys., 2001, 40: L1365-L1366.CrossRefGoogle Scholar
  10. 10.
    Singer, P. M., Imai, T., He, T. et al., 13C NMR investigation of the superconductor MgCNi3 up to 800 K, Phys. Rev. Lett., 2001, 87: 257601–257602.CrossRefGoogle Scholar
  11. 11.
    Li, S. Y., Fan, R., Chen, X. H. et al., Upper critical field and Hall effect in superconducting perovskite MgCNi3, Phys. Rev. B, 2001, 64: 132505–132506.CrossRefGoogle Scholar
  12. 12.
    Gao, L., Xue, Y. Y., Chu, C. W. et al., Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m=l,2,3) under quasihydrostatic pressures, Phys. Rev. B, 1994, 50: 4260–4263.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  • Youlin Zhang
    • 1
    • 2
    • 3
  • Fengying Li
    • 1
    • 2
  • Liangchen Chen
    • 1
    • 2
  • Jing Liu
    • 2
  • Richeng Yu
    • 1
    • 2
  • Zhenxing Liu
    • 1
    • 2
  • Wen Yu
    • 3
  • Changqing Jin
    • 1
    • 2
  1. 1.Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Beijing High Pressure Research CenterChinese Academy of SciencesBeijingChina
  3. 3.Department of PhysicsBeijing University of Science and TechnologyBeijingChina

Personalised recommendations