Chinese Science Bulletin

, Volume 47, Issue 17, pp 1415–1421 | Cite as

Strategy against micrometastasis of epithelial cancer: Detection and elimination

  • Li Qin
  • Yi Xiao
  • Yinghua Chen


Tumor metastasis is generally agreed to be the major cause of cancer death. Over the last few years, studies of new diagnosis techniques and tumor immunotherapy have made great progress. Recent clinical studies on the occult metastases of breast, lung and colorectal cancer all suggested that the detection of micrometastases in bone marrow is prognostically important and provides substantial evidence of tumor dissemination. On the other hand, two kinds of the mAb-based immunotherapy have been approved for the treatment against epithelial cancer. Monoclonal antibody (mAb) 17-1A for colorectal carcinomas and mAb herceptin for breast cancer both have produced good curative effects. Potential therapeutics based on some antibodies with prominent antitumor activity also has shown obvious clinical effect. These studies indicate that detection of micrometastasis in circulatory system and immunotherapy by eliminating metastatic malignant cells suggested a new strategy against the metastatic cancer.


tumor micrometastasis detection elimination immunotherapy mAb 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Henderson, B. E., Ross, R. K., Pike, M. C., Toward the primary prevention of cancer, Science, 1991, 254: 1131.CrossRefGoogle Scholar
  2. 2.
    Mou, D. C., Cai, S. L., Peng, J. R. et al., Evaluation of MAGE-1 and MAGE-3 as tumour-specific markers to detect blood dissemination of hepatocellular carcinoma cells, British Journal of Cancer, 2002, 86, 110.CrossRefGoogle Scholar
  3. 3.
    Oberneder, R., Riesenberg, R., Kriegmair, M. et al., Immunocytochemical detection and phenotypic characterization of micrometastatic tumour cells in bone marrow of patients with prostate cancer, Urol. Res., 1994, 22: 3.CrossRefGoogle Scholar
  4. 4.
    Cote, R. J., Beattie, E. J., Chaiwun, B. et al., Detection of occult bone marrow metastases in patients with operable lung carcinoma, Ann. Surg., 1995, 222: 415.Google Scholar
  5. 5.
    Pantel, K., Isbicki, J., Passlick, B. et al., Frequency and prognostic significance of isolated tumour cells in bone marrow of patients with non-small cell lung cancer without overt metastases, Lancet, 1996, 347: 649.CrossRefGoogle Scholar
  6. 6.
    Lindemann, F., Schlimok, G., Dirschedl, P. et al., Prognostic significance of micrometastatic tumor cells in bone marrow of colorectal cancer patients, Lancet, 1992, 340: 685.CrossRefGoogle Scholar
  7. 7.
    Kasper, M., Stosiek, P., Typlt, H. et al., Histological evaluation of three new monoclonal anti-cytokeratin antibodies, Eur. J. Cancer Clin. Oncol., 1987, 23(2): 137.CrossRefGoogle Scholar
  8. 8.
    Butschak, G., Neupert, G., Karsten, U., Patterns of cytokeratins and lamins in rat liver and in rat livercell lines as shown by immunoblotting using the monoclonal antibodies A45-B/B3 and A51-B/H4, Acta Histochem., 1992, 16: 107.Google Scholar
  9. 9.
    Chen, Y. H., Gao, W. H., Li, J. et al., Detection of bone marrow micrometastasis, Hybridoma, 1999, 18(5): 465.Google Scholar
  10. 10.
    Gross, H. J., Verwer, B., Houck, D. et al., Model study detecting breast cancer cells in peripheral blood mononuclear cells at frequencies as low as 10(-7), Proc. Natl. Acad. Sci. USA, 1995, 92(2): 537.CrossRefGoogle Scholar
  11. 11.
    Nishizaki, T., de Vries, S., Chew, K. et al., Genetic alterations in primary breast cancers and their metastases: direct comparison using modified comparative genomic hybridization, Genes Chromosomes Cancer, 1997, 19(4): 267.CrossRefGoogle Scholar
  12. 12.
    Aragane, H., Sakakura, C., Nakanishi, M. et al., Chromosomal aberrations in colorectal cancers and liver metastases analyzed by comparative genomic hybridization, Int. J. Cancer, 2001, 94(5): 623.CrossRefGoogle Scholar
  13. 13.
    Braun, S., Hepp, F., Kentenich, C. R. M. et al., Monoclonal antibody therapy with edrecolomab in breast cancer patients: monitoring of elimination of disseminated cytokeratin-positive tumor cells in bone marrow, Clin. Cancer Res., 1999, 5: 3999.Google Scholar
  14. 14.
    Mangel, J., Buckstein, R., Imrie, K. et al., Immunotherapy with rituximab following high-dose therapy and stem-cell transplantation for mantle cell lymphoma, Semin. Oncol., 2002, 29 (Suppl. 2): 56.CrossRefGoogle Scholar
  15. 15.
    Maletz, K., Kufer, P., Mack, M. et al., Bispecific single-chain antibodies as effective tools for eliminating epithelial cancer cells from human stem cell preparations by redirected cell cytotoxicity, Int. J. Cancer, 2001, 93(3): 409.CrossRefGoogle Scholar
  16. 16.
    Wood, D. P. J., Banks, E. R., Humphreys, S., Rangnekar, V. M., Sensitivity of immunohistochemistry and polymerase chain reaction in detecting prostate cancer cells in the bone marrow, J. Histochem. Cytochem., 1994, 42: 505.Google Scholar
  17. 17.
    Pajonk, F., Schlessmann, S., Guttenberger, R., Henke, M., Epithelial cells in the peripheral blood of patients with cancer of the head and neck: incidence, detection and possible clinical significance, Radiotherapy and Oncology, 2001, 59: 213.CrossRefGoogle Scholar
  18. 18.
    Aerts, J., Wynendaele, W., Paridaens, R. et al., A real-time quantitative reverse transcriptase polymerase chain reaction (RT-PCR) to detect breast carcinoma cells in peripheral blood, Ann Oncol., 2001, 12(1): 39.CrossRefGoogle Scholar
  19. 19.
    Gelmini, S., Tricarico, C., Vona, G. et al., Real-Time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) for the measurement of prostate-specific antigen mRNA in the peripheral blood of patients with prostate carcinoma using the taqman detection system, Clin. Chem. Lab Med., 2001, 39(5): 385.CrossRefGoogle Scholar
  20. 20.
    Yuan, A., Yu, C. J., Luh, K. T. et al., Quantification of VEGF mRNA expression in non-small cell lung cancer using a real-time quantitative reverse transcription-PCR assay and a comparison with quantitative competitive reverse transcription-PCR, Lab Invest., 2000, 80(11): 1671.Google Scholar
  21. 21.
    Rosenberg, S. A., Progress in human tumor immunology and immunotherapy, Nature, 2001, 411(17): 380.CrossRefGoogle Scholar
  22. 22.
    Rosenberg, S. A., Lotze, M. T., Muul, L. M. et al., A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2, or high dose interleukin-2 alone, N. E. J. M., 1987, 316: 889.Google Scholar
  23. 23.
    Freedman, R. S., Edwards, C. L., Kavavanagh, J. J. et al., Intraperitoneal adoptive immunotherapy of ovarian carcinoma with tumourinfiltrating lymphocytes and low-dose recombinant interleukin-2: a pilot trial, J. Immunother., 1994, 16: 198.CrossRefGoogle Scholar
  24. 24.
    Thiounn, N., Mathiot, C., Flam, T. et al., CD4 TIL induce complete response in patients treated with IL-2 (interleukin-2), Preliminary study (in French), J. Urol., 1994, 100: 185.Google Scholar
  25. 25.
    Kruit, W. H., Goey, S. H., Lamers, C. H. et al., High-dose regimen of interleukin-2 and interferon-alpha in combination with lymphokine-activated killer cells in patients with metastatic renal cell cancer, J. Immunother., 1997, 20(4): 312.CrossRefGoogle Scholar
  26. 26.
    Rosenberg, S. A., Yannelli, J. R., Yang, J. C. et al., Treatment of patients with metastatic melanoma with autologous tumorinfiltration lymphocytes and interleukin-2, J. Natl. Cancer Inst. USA, 1994, 86: 1159.CrossRefGoogle Scholar
  27. 27.
    Maxwell-Armstrong, C. A., Durrant, L. G., Buckley, T. J. D. et al., Randomized double-blind phase II survival study comparing immunization with the anti idiotypic monoclonal antibody 105AD7 against placebo in advanced colorectal cancer, British Journal of Cancer, 2001, 84(11): 1443.CrossRefGoogle Scholar
  28. 28.
    Hui, J. Y., Li, G. D., Kong, Y. Y., Wang, Y., DNA-based immunization against hepatitis B surface antigen carrying preS epitopes, Chinese Science Bulletin, 1999, 44(7): 620.CrossRefGoogle Scholar
  29. 29.
    Goydos, J. S., Elder, E., Whiteside, T. L. et al., A phase I trial of a synthetic mucin peptide vaccine induction of specific immune reactivity in patients with adenocarcinoma, Journal of Surgical Research, 1996, 63(1): 298.CrossRefGoogle Scholar
  30. 30.
    Jager, E., Hohn, H., Necker, A. et al., Peptide-specific CD8+T-cell evolution in vivo: response to peptide vaccination with Melan-A/MART-I, International Journal of Cancer, 2002, 98(3): 376.CrossRefGoogle Scholar
  31. 31.
    Caudill, M. M., Li, Z. H., HSPPC-96: a personalised cancer vaccine, Expert Opinion on Biological Therapy, 2001, 1(3): 539.CrossRefGoogle Scholar
  32. 32.
    Sahin, U., Tureci, O., Pfreundschuh, M., Serological identification of human tumor antigens, Curr. Opin. Immunol., 1997, 9: 709.CrossRefGoogle Scholar
  33. 33.
    Chen, Y. T., Old, L. J., Cancer-testis antigens: targets for cancer immunotherapy, Cancer J. Sci. Am., 1999, 5: 16.CrossRefGoogle Scholar
  34. 34.
    Old, L. J., Chen, Y. T., New paths in human cancer serology, J. Exp.Med., 1998, 187: 1163.CrossRefGoogle Scholar
  35. 35.
    Lee, L., Wang, R. F., Wang, X. et al., NY-ESO-1 may be a potential target for lung cancer immunotherapy, Cancer J. Sci. Am., 1999, 5(1): 20.Google Scholar
  36. 36.
    Chen, Y. T., Scanlan, M. J., Sahin, U. et al., A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening, Proc. Natl. Acad. Sci. USA, 1997, 94: 1914.CrossRefGoogle Scholar
  37. 37.
    Mackensen, A., Herbst, B., Chen, J. L. et al., Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells, Int. J. Cancer, 2000, 86(3): 385.CrossRefGoogle Scholar
  38. 38.
    Nestle, F. O., Alijagic, S., Gilliet, M. et al., Vaccination of melanoma patients with peptideor tumor lysate-pulsed dendritic cells, Nat. Med., 1998, 4: 328.CrossRefGoogle Scholar
  39. 39.
    Boon, T., van der Bruggen, P., Human tumor antigens recognized by T lymphocytes, J. Exp. Med., 1996, 183: 725.CrossRefGoogle Scholar
  40. 40.
    Rosenberg, S. A., Kawakami, Y., Robbins, P. F. et al., Identification of the genes encoding cancer antigens: implications for cancer immunotherapy, Adv. Cancer Res., 1996, 70: 145.CrossRefGoogle Scholar
  41. 41.
    Pardoll, D. M., Topalian, S. L., The role of CD4+T-cell responses in antitumor immunity, Curr. Op. Immunol., 1998, 10: 588.CrossRefGoogle Scholar
  42. 42.
    Litvinov, S. V., Velders, M. P., Bakker, H. A. M. et al., Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule, J. Cell Biol., 1994, 125: 437.CrossRefGoogle Scholar
  43. 43.
    Bumol, T. F., Marder, P., de Herdt, S. J. et al., Characterization of the human tumor and normal tissue reactivity of the KS1/4 monoclonal antibody, Hybridoma, 1988, 7: 407.CrossRefGoogle Scholar
  44. 44.
    Gottlinger, H., Johnson, J., Riethmuller, G., Biochemical and epitope analysis of the 17-1A membrane antigen, Hybridoma, 1986, 5(Suppl. 1): S29.Google Scholar
  45. 45.
    Adkins, J. C., Spencer, C. M., Edrecolomab (Monoclonal Antibody 17-1A), Drugs, 1998, 56(4): 619.CrossRefGoogle Scholar
  46. 46.
    Riethmuller, G., Schneider-Gadicke, E., Schlimok, G. et al., Randomized trial of monoclonal antibody for adjuvant therapy of resected Dukes’ C colorectal carcinoman, Lancet, 1994, 343: 1177.CrossRefGoogle Scholar
  47. 47.
    Riethmuller, G., Holz, E., Schlimok, G. et al., Monoclonal antibody therapy for resected Dukes’ C colorectal cancer: seven-year outcome of a multicenter randomized trial, J. Clin. Oncol., 1998, 16(5): 1788.Google Scholar
  48. 48.
    Ranghammer, P., Frodin, J. E., Hjelm, A. L. et al., Different dose regimens of the mouse monoclonal antibody 17-1A for therapy of patients with metastatic colorectal carcinoma, Int. J. Oncol., 1995, 7: 1049.Google Scholar
  49. 49.
    Sindelar, W. F., Maher, M. M., Herlyn, D. et al., Trial of therapy with monoclonal antibody 17-1A in pancreatic carcinoma: preliminary results, Hybridoma, 1986, 5(Suppl. 1): S125.Google Scholar
  50. 50.
    Jain, R. K., Delivery of molecular medicine to solid tumors, Science, 1996, 27: 1079.CrossRefGoogle Scholar
  51. 51.
    Hempel, D., Muller, P., Oruzio, D. et al., Combination of high-dose chemotherapy and monoclonal antibody in breast-cancer patients: a pilot trial to monitor treatment effects on disseminated tumor cells, Cytotherapy, 2000, 2(4): 287.CrossRefGoogle Scholar
  52. 52.
    Weiner, L. M., Adams, G. P., New approaches to antibody therapy, Oncogene, 2000, 19(53): 6144.CrossRefGoogle Scholar
  53. 53.
    Dillman, R. O., Perceptions of Herceptin: a monoclonal antibody for the treatment of breast cancer, Cancer Biother. Radiopharm., 1999, 14(1): 5.CrossRefGoogle Scholar
  54. 54.
    Baselga, J., Clinical trials of Herceptin(R) (trastuzumab), Eur. J. Cancer, 2001, 37(Suppl. 1): 18.CrossRefGoogle Scholar
  55. 55.
    Agus, D. B., Bunn, P. A. Jr., Franklin, W. et al., HER-2/neu as a therapeutic target in non-small cell lung cancer, prostate cancer, and ovarian cancer, Semin. Oncol., 2000, 27(Suppl. 11): 53.Google Scholar
  56. 56.
    Zhang, S., Zhang, H. S., Cordon-Cardo, C. et al., Selection of tumor antigens as targets for immune attack using immunohistochemistry: II. blood group-related antigens, Int. J. Cancer, 1997, 73: 50.CrossRefGoogle Scholar
  57. 57.
    Trail, P. A., Wiliner, D., Lasch, S. J. et al., Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates, Science, 1993, 261: 212.CrossRefGoogle Scholar
  58. 58.
    Sjögren, H. O., Isaksson, M., Willner, D. et al., Antitumor activity of carcinoma-reactive BR96-doxorubicin conjugate against human carcinomas in athymic mice and rats and syngeneic rat carcinomas in immunocompetent rats, Cancer Res., 1997, 57: 4530.Google Scholar
  59. 59.
    Tolcher, A. W., Sugarman, S., Gelmon, K. A. et al., Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer, J. Clin. Oncol., 1999, 17: 478.Google Scholar
  60. 60.
    Schlimok, G., Pantel, K., Loibner, H. et al., Reduction of metastatic carcinoma cells in bone marrow by intravenously administered monoclonal antibody: towards a novel surrogate test to monitor adjuvant therapies of solid tumours, Eur. J. Cancer, 1995, 31: 1799.CrossRefGoogle Scholar
  61. 61.
    Cott, A. M., Geleick, D., Rubira, M. et al., Construction, production, and characterization of humanized anti-Lewis Y monoclonal antibody 3S193 for targeted immunotherapy of solid tumors, Cancer Res., 2000, 60(12): 3254.Google Scholar
  62. 62.
    Maletz, K., Kufer, P., Mack, M. et al., Bispecific single-chain antibodies as effective tools for eliminating epithelial cancer cells from human stem cell preparations by redirected cell cytotoxicity, Int. J. Cancer, 2001, 93(3): 409.CrossRefGoogle Scholar
  63. 63.
    McLaughlin, P., Grillo-Lopez, A. J., Link, B. K. et al., Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program, Journal of Clinical Oncology, 1998, 16: 2825.Google Scholar
  64. 64.
    Verschuuren, E. A. M., Stevens, S. J. C., Van Imhoff, G. W. et al., Treatment of posttransplant lymphoproliferatieve disease with rituximab: The remission, the relapse, and the complication, Transplantation, 2002, 73(1): 100.CrossRefGoogle Scholar
  65. 65.
    Zaja, F., Iacona, I., Masolini, P. et al., B-cell depletion with rituximab as treatment for immune hemolytic anemia and chronic thrombocytopenia, Haematologica, 2002, 87(2): 189.Google Scholar
  66. 66.
    Saffran, D. C., Raitano, A. B., Hubert, R. S. et al., Anti-PSCA mAbs inhibit tumor growth and metastasis formation and prolong the survival of mice bearing human prostate cancer xenografts, Proc. Natl. Acad. Sci. USA, 2001, 98(5): 2658.CrossRefGoogle Scholar
  67. 67.
    Maguire, H. C. Jr., Berd, D., Lattime, E. C. et al., Phase I study of R24 in patients with metastatic melanoma including evaluation of immunologic parameters, Cancer Biother. Radiopharm., 1998, 13(1): 13.Google Scholar
  68. 68.
    Braun, S., Hepp, F., Sommer, H. L., Pantel, K., Tumor-antigen heterogeneity of disseminated breast cancer cells: Implications for immunotherapy of minimal residual disease, Int. J. Cancer, 1999, 84: 1.CrossRefGoogle Scholar
  69. 69.
    Meredith, R. F., Khazaeli, M. B., Plott, W. E. et al., Initial clinical-evaluation of iodine-125-labeled chimeric 17-1a for metastatic colon-cancer, Journal of Nuclear Medicine, 1995, 36(12): 2229.Google Scholar
  70. 70.
    Shetye, J., Ragnhammar, P., Liljefors, M. et al., Immunopathology of metastases in patients of colorectal carcinoma treated with monoclonal antibody 17-1A and granulocyte macrophage colony-stimulating factor, Clinical Cancer Research, 1998, 4(8): 1921.Google Scholar
  71. 71.
    Flieger, D., Spengler, U., Beier, I. et al., Augmentation of 17-1A-induced antibody-dependent cellular cytotoxicity by the triple cytokine combination of interferon-alpha, interleukin-2, and interleukin-12, Journal of Immunotherapy, 2000, 23(4): 480.CrossRefGoogle Scholar
  72. 72.
    Lance, A. L., An attractive force in metastasis, Nature, 2001, 410: 24.CrossRefGoogle Scholar
  73. 73.
    Muller, A., Homey, B., Soto, H. et al., Involvement of chemokine receptors in breast cancer metastasis, Nature, 2001, 410: 50.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2002

Authors and Affiliations

  1. 1.Laboratory of Immunology, Research Centre for Medical Science and Department of BiologyTsinghua University, Protein Science Laboratory of MOEBeijingChina

Personalised recommendations