Advertisement

Chinese Science Bulletin

, Volume 47, Issue 13, pp 1138–1144 | Cite as

Late Devonian red tide and mass extinction

Discussion

Abstract

Molecular stratigraphical, carbonate carbon isotopic, stratigraphical and paleontological data show that algal booming, eutrophication, anoxia, hypersalinity, positive δ13C excursion and biomass decreasing occurred in the offshore carbonate environments of the Frasnian-Famennian (F-F) transition, which hints that red tide might frequently take place in the F-F transition of Guangxi, South China. We suggest that the mass extinction of the reef ecosystems and the shallow-water marine organisms in the F-F transition of the lower-middle latitudes may be related to the frequent occurrence of red tide in that time.

Keywords

red tide eutrophication mass extinction Devonian South China 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Office of Geological Dictionary, Geological Dictionary (in Chinese), Beijing: Geological Publishing House, 1989, 528.Google Scholar
  2. 2.
    Zhang, Z. B., Chen, Z. D., Liu, G. L. et al., Principle and Application of Oceanochemistry—Oceanochemistry in Offshore Waters of China (in Chinese), Beijing: China Ocean Press, 1999, 119–143.Google Scholar
  3. 3.
    Philp, R. P., Fossil Fuel Biomarkers: Applications and Spectra, Amsterdam: Elsevier, 1985, 1–268.Google Scholar
  4. 4.
    Johns, R. B., Biological Markers in the Sedimentary Record, Amsterdam: Elsevier, 1986, 1–286.Google Scholar
  5. 5.
    Wang, Q. J., Chen, J. Y., Geochemistry of Petroleum and Gas (in Chinese), Wuhan: China University of Geosciences Press, 1988, 1–327.Google Scholar
  6. 6.
    Murphy, A. E., Sageman, B. B., Hollander, D. J. et al., Black shale deposition and faunal overturn in the Devonian Appalachian basin: Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling, Paleoceanography, 2000, 15(3): 280.CrossRefGoogle Scholar
  7. 7.
    Brassell, S. G., Eglinton, G., Maxwell, J. R. et al., Natural background of alkanes in the aquatic environment, Aquatic Pollutants (eds. Hutzinger, O., Van Lelyveld, I. H., Zoeteman, B. C. J.), Oxford: Pergamon Press, 1978, 69–86.Google Scholar
  8. 8.
    Mello, M. R., Telnaes, N., Gaglianone, M. I. et al., Organic geochemical characterisation of depositional palaeoenvironments of source rocks and oils in Brazilian marginal basins, Organic Geochemistry, 1988, 13: 31.CrossRefGoogle Scholar
  9. 9.
    Wang, T. G., A discussion on sedimentary environment biomarkers in certain Chinese crude oils and source rocks, Approach to Biomarker Geochemistry (ed. Wang, T. G.) (in Chinese), Wuhan: China University of Geosciences Press, 1990, 55–65.Google Scholar
  10. 10.
    Brooks, J. D., Gould, K., Smith, J., Isoprenoid hydrocarbons in coal and petroleum, Nature, 1969, 222: 257.CrossRefGoogle Scholar
  11. 11.
    Didyk, B. M., Simoneit, B. R. T., Bsassell, S. C. et al., Organic geochemical indicators of palaeoenvironmental conditions of sedimentation, Nature, 1978, 272: 216.CrossRefGoogle Scholar
  12. 12.
    Fu, J. M., Sheng, G. Y., Xu, J. Y. et al., Application of biomarker compounds in assessment of paleoenvironments of Chinese terrestrial sediments, Geochimica (in Chinese with English abstract), 1991, 20(1): 1.Google Scholar
  13. 13.
    Fu, J. M., Sheng, G. Y., Molecular organic geochemistry and its application to the study of paleoclimate and paleoenvironments, Quaternary Sciences (in Chinese), 1992, (4): 306.Google Scholar
  14. 14.
    Hu, X. M., Wang, C. S., Li, X. H. et al., Cenomanian-Turonian anoxic event in southern Tibet: A study of organic geochemistry, Geochimica (in Chinese with English abstract), 2000, 29 (5): 417.Google Scholar
  15. 15.
    Xu, W. H., Zhang, Z. Y., Sheng, P. et al., Biomarkers from the Xiayangao Member of the Early Ordovician Tonggao Formation in the Sandu area, Guizhou province, Acta Sedimentologica Sinica (in Chinese with English abstract), 1997, 15 (3): 72.Google Scholar
  16. 16.
    Ten Haven, H. L., de Leeuw, J. W., Rullkotter, J. et al., Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator, Nature, 1987, 330: 641.CrossRefGoogle Scholar
  17. 17.
    Gong, Y. M., Li, B. H., Wang, C. Y. et al., Orbital cyclostratigraphy of the Devonian Frasnian-Famennian transition in South China, Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 168(3–4): 237.CrossRefGoogle Scholar
  18. 18.
    Holser, W. T., Magaritz, M., Ripperdan, R. L., Global isotopic events, Global Events and Event Stratigraphy (ed. Walliser, O. H.), Berlin: Springer Verlag, 1996, 63–87.Google Scholar
  19. 19.
    Joachimski, M. M., Buggisch, W., Anoxic event in the late Frasnian — cause of the Frasnian-Famennian faunal crisis? Geology, 1993, 21: 675.CrossRefGoogle Scholar
  20. 20.
    Zhong, K., Wu, Y., Yin, B. A. et al., Devonian of Guangxi (in Chinese with English abstract), Wuhan: China University of Geosciences Press, 1992, 1–384.Google Scholar
  21. 21.
    Zeng, Y. F., Zhang, J. Q., Liu, W. J. et al., Devonian Lithofacies Paleogeography and Mineralization in South China (in Chinese with English abstract), Beijing: Geological Publishing House, 1993, 1–123.Google Scholar
  22. 22.
    Yin, H. E., Wu, S. B., Du, Y. S. et al., South China defined as part of Tethyan archipelagic ocean system, Earth Science (in Chinese with English abstract), 1999, 24: 1.Google Scholar
  23. 23.
    Bai, S. L. Chemo-biostratigraphy of the Devonian Frasnian-Famennian transitional events, Acta Scientiarum Naturalium, Universitatis Pekinensis (in Chinese with English abstract), 1998, 34 (2–3), 363.Google Scholar
  24. 24.
    Joachimski, M. M., Comparison of organic and inorganic carbon isotope patterns across the Frasnian-Famennian boundary, Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132: 133.CrossRefGoogle Scholar
  25. 25.
    Ji, Q., On the Frasnian-Famennian extinction event in South China as viewed in the light of conodont study, Collected Papers of Stratigraphy and Palaeontology (in Chinese with English abstract), 1994, 24, 79.Google Scholar
  26. 26.
    Guo, S. Z., The Frasnian-Famennian transitional bioevents and Late Devonian corals in Great Khingan Ranges, Northeastern China, Acta Palaeontologica Sinica (in Chinese with English abstract), 1990, 29 (4), 427.Google Scholar
  27. 27.
    Gong, Y. M., Yin, H. F., Tong, J. N., Outline on global environmental changes symposium of the geological historical overturn periods, Geological Science and Technology Information (in Chinese with English abstract), 1998, 17(4), 101.Google Scholar
  28. 28.
    Li, Y. X., Famennian tentaculites from Luofu, Guangxi: Survivors of F-F extinction event, Journal of Guilin Institute of Technology (in Chinese with English abstract), 1995, 15 (2), 157.Google Scholar
  29. 29.
    Hou, H. F., Muchez, P., Swennen, R. et al., The Frasnian-Famennian event in Hunan province, South China: Biostratigraphical, sedimentological and geochemical evidence, Mem. Inst. Geol. Univ. Louvain, 1996, 36: 209.Google Scholar
  30. 30.
    Sepkoski, J. J., Phanerozoic overview of mass extinctions, Patterns and Processes in the History of Life (eds. Raup, D. M., Jablonski, D.), Berlin: Springer Verlag, 1986, 277–295.Google Scholar
  31. 31.
    McGhee, G. R., The Late Devonian Mass Extinction: The Frasnian-Famennian Crisis, New York: Columbia University Press, 1996, 1–327.Google Scholar
  32. 32.
    Droser, M. L., Bottjer, D. J., Sheehan, P. M. et al., Decoupling of taxonomic and ecologie severity of Phanerozoic marine mass extinctions, Geology, 2000, 28 (8): 675.CrossRefGoogle Scholar
  33. 33.
    Walliser, O. H., Global events in the Devonian and Carboniferous, Global Events and Event Stratigraphy (ed. Walliser, O. H.), Berlin: Springer Verlag, 1996, 225–250.Google Scholar
  34. 34.
    Hallam, A., Wignall, P. B., Mass Extinctions and Their Aftermath, Oxford: Oxford University Press, 1997, 1–320.Google Scholar
  35. 35.
    Racki, G., The Frasnian-Famennian biotic crisis: How many (if any) bolide impacts? Geol. Rundsch., 1999, 87: 617.CrossRefGoogle Scholar
  36. 36.
    Wang, K., Geldsetzer, H. H. J., Goodfellow, W. D. et al., Carbon and sulfur isotope anomalies across the Frasnian-Famennian extinction boundary, Alberta, Canada, Geology, 1996, 24: 187.CrossRefGoogle Scholar
  37. 37.
    Brand, U., Global climatic changes during the Devonian-Mississippian: Stable isotope biogeochemistry of brachiopods, Palaeogeography, Palaeoclimatology, Palaeoecology, 1989, 75: 311.CrossRefGoogle Scholar
  38. 38.
    Luz, B., Kolodny, Y., Kovach, J., Oxygen isotope variations in phosphate of biogenic apatites, III, Conodonts, Earth and Planetary Science Letters, 1984, 69: 255.CrossRefGoogle Scholar
  39. 39.
    Tyson, R. V., Pearson, T. H., Modern and ancient continental shelf anoxia: an overview, Modern and Ancient Continental Shelf Anoxia (eds. Tyson, R. V., Pearson, T. H.), London: Geological Society Special Publication, 1991, 58: 1–24.Google Scholar
  40. 40.
    Murphy, A. E., Sageman, B. B., Hollander, D. J., Eutrophication by decoupling of the marine biological cycles of C, N and P: A mechanism for the Late Devonian mass extinction, Geology, 2000, 28 (5): 427.CrossRefGoogle Scholar
  41. 41.
    Caplan, M. L., Bustin, R. M., Grimm, K. A. et al., Demise of a Devonian-Carboniferous carbonate ramp by eutrophication, Geology, 1996, 24 (8): 715.CrossRefGoogle Scholar
  42. 42.
    Tyrrell, T., The relative influences of nitrogen and phosphorus on oceanic primary production, Nature, 1999, 400: 525.CrossRefGoogle Scholar
  43. 43.
    Tappan, H., Extinction or survival: selectivity and causes of Phanerozoic crises, Geol. Soc. Am. Spec. Pap., 1982, 190: 265.Google Scholar
  44. 44.
    Paris, F., Girard, C., Feist, R. et al., Chitinozoan bio-event in the Frasnian-Famennian boundary beds at La Serre (Montagne Noire, southern France), Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 121: 131.CrossRefGoogle Scholar
  45. 45.
    Filipiak, P., The Devonian and Carboniferous palynomorphs from the Western Holy Cross Mts. (Poland), and their environmental significance, Acta Univ. Carol. Geol., 1997, 40: 377.Google Scholar
  46. 46.
    Algeo, T. J., Scheckler, S. E., Terrestrial-marine teleconnections in the Devonian: Link between the evolution of land plants, weathering processes, and marine anoxic events, Phil. Trans. R. Soc. Lond. B., 1998, 353: 113.CrossRefGoogle Scholar
  47. 47.
    Geldsetzer, H. H. J., Goodfellow, W. D., Mclaren, D. J., The Frasnian-Famennian extinction event in a stable cratonic shelf setting: Trout River, NWT, Canada, Palaeogeography, Palaeoclimatology, Palaeoecology, 1993, 104: 81.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2002

Authors and Affiliations

  1. 1.Faculty of Earth ScienceChina University of GeosciencesWuhanChina
  2. 2.Laboratory of Marine GeologyTongji UniversityShanghaiChina
  3. 3.Department of Computer ScienceSouth-Central University for NationalitiesWuhanChina
  4. 4.Guangxi Institute of GeologyNanningChina

Personalised recommendations