Chinese Science Bulletin

, Volume 47, Issue 13, pp 1063–1069 | Cite as

Structural characteristics of middle and southern Xainza-Dinggye Normal Fault System and its relationship to Southern Tibetan Detachment System

  • Jinjiang Zhang
  • Lei Guo
  • Lin Ding


The Xainza-Dinggye Normal Fault System (XDNFS) is a large-scale nearly-north-south trending extensional structure across central and southern Tibet. Its middle segment developed in Tethys Himalaya with features of earlier magmatic core complex and later normal faults dipping moderately to northwest-west. The magmatic core complex is made up by mylonitic leucogrante with a low-angle detachment fault on the top of it and overlain by lower-grade meta-sedimentary rocks. The structural pattern of the southern segment of XDNFS take the shape of a detachment fault dipping to southeast-east with the High-Himalayan rock series as the lower plate. The Southern Tibetan Detachment System (STDS) is expressed as a ductile shear zone composed of mylonitic leucogranite in the studied area of this note. STDS was cut by the later XDNFS, which presents that nearly-east-west striking STDS is not the controlling or adjusting structure of the nearly-north-south trending extensional structures. The origin of nearly-north-south trending extensional structures in Tibet may be the result of deform ational partition of north-south compression.


Tibetan Plateau extensional structure Xainza-Dinggye Normal Fault System (XDNFS) Southern Tibetan Detachment System (STDS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Molnar, P., Tapponnier, P., Active tectonics of Tibet, J. Geophys. Res., 1978, 83: 5361.CrossRefGoogle Scholar
  2. 2.
    Burchfiel, B. C., Royden, L. H., North-south extension within the convergent Himalayan region, Geology, 1985, 13: 679.CrossRefGoogle Scholar
  3. 3.
    England, P. C., Houseman, G. A., The mechanics of the Tibetan plateau, Phil. Tans. R. Soc. Lond., 1986, 326: 301.CrossRefGoogle Scholar
  4. 4.
    Armijo, R., Tapponnier, P., Mercier, J. P. T. et al., Quaternary extension in southern Tibet, J. Geophys. Res., 1986, 91: 13803.CrossRefGoogle Scholar
  5. 5.
    Armijo, R., Tapponnier, P., Han, T., Late Cenozoic right-lateral strike-slip faulting across southern Tibet, J. Geophys. Res., 1989, 94: 2787.CrossRefGoogle Scholar
  6. 6.
    Le Fort, P., Manaslu leucogranite, a collisional signature of the Himalaya, a model for its genesis and emplacement, J. Geophs. Res., 1981, 86: 10545.CrossRefGoogle Scholar
  7. 7.
    Searle, M. P., Cooling history, erosion, exhumation, and kinematics of Himalaya-Karakoram-Tibet orogenic belt, (eds. Yin, A., Harrison, T. M.) The tectonic evolution of Asia, New York: Cambridge Unversity Press, 1996, 109–137.Google Scholar
  8. 8.
    Yin, A., Kapp, P. A., Murphy, M. A. et al., Significant late Neogene east-west extension in northern Tibet, Geology, 1999, 27: 787.CrossRefGoogle Scholar
  9. 9.
    Yin, A., Harrison, T. M., Geologic evolution of the Himalayan-Tibetan orogen, Annu. Rev. Earth Planet. Sci., 2000, 28: 211.CrossRefGoogle Scholar
  10. 10.
    Blisniuk, P. M., Hacker, B. R., Glodny, T. et al., Normal faulting in central Tibet since at least 13.5 Myr ago, Nature, 2001, 412: 628.PubMedCrossRefGoogle Scholar
  11. 11.
    Coleman, M., Hodges, K., Evidence for Tibetan plateau uplift before 14 Myr age from a new minimum age for east-west extension, Nature, 1995, 374: 49.CrossRefGoogle Scholar
  12. 12.
    Searle, M. P., The rise and fall of Tibet, Nature, 1995, 347: 17.CrossRefGoogle Scholar
  13. 13.
    Seeber, L., Pêcher, A., Strain partitioning along the Himalayan arc and the Nanga Parbat antiform, Geology, 1998, 26: 791.CrossRefGoogle Scholar
  14. 14.
    Zhang, J., Ding, L., Zhong, D. et al., Orogen-parallel extension in Himalaya: Is it the indicator of collapse or the product in process of compressive uplift? Chinese Science Bulletin, 2000, 45: 114.CrossRefGoogle Scholar
  15. 15.
    Hurtado, J. M., Hodges, K. V., Whipple, K. X., Neotectonics of the Takkhola Graben and implications for recent activity on the South Tibetan Fault System in the central Nepalese Himalaya, Geol. Sco. Am. Bull., 2001, 113: 222.CrossRefGoogle Scholar
  16. 16.
    Edwards, M. A., Harrison, T. M., When did the roof collapse? Late Miocene north-south extension in the high Himalaya revealed by Th-Pb monazite dating of the Khula Kangri granite, Geology, 1997, 25: 543.CrossRefGoogle Scholar
  17. 17.
    Wu, C., Nelson, K. D., Wortman, G. et al., Yadong cross structure and South Tibetan Detachment in the east central Himalaya (89° –90° E), Tectonics, 1998, 17: 28.CrossRefGoogle Scholar
  18. 18.
    Liu, J., Liu, Y., Chen, H. et al., The inner zone of the Liaoji Paleorift: its early structural style and structural evolution, J. Asian Earth Sciences, 1997, 15(1): 19Google Scholar
  19. 19.
    Burg, J. P., Brunei, M., Gapais, D. et al., Deformation of the crystalline main central sheet in south Tibet (China), J. Struct. Geol., 1984, 6: 535.CrossRefGoogle Scholar
  20. 20.
    Copeland, P., Parrish, R. R., Harrison, T. M., Identification of inherited radiogenic Pb in mozazite and its implications for U-Pb systematics, Nature, 1988, 333: 760.CrossRefGoogle Scholar
  21. 21.
    Burchfiel, B. C., Chen, Z., Hodges, K. V. et al., The south Tibetan detachment system, Himalayan orogen, Extension contemporaneous with and parallel to shortening in a collisional mountain belt, Geol. Soc. Am. Special Paper, 1992, 269: 41.Google Scholar
  22. 22.
    Harrison, T. M., Copeland, P., Kidd, W. et al., Activation of the Nyainqentanglha Shear Zone, applications for uplift of the southern Tibet Plateau, Tectonics, 1995, 14: 658.CrossRefGoogle Scholar
  23. 23.
    Fielding, E. J., Tibet uplift and erosion, Tectonophysics, 1996, 260: 55.CrossRefGoogle Scholar
  24. 24.
    Murphy, M. A., Harrison, T. M., Relationship between leucogranite and the Qomolangma detachment in Rongbuk Valley, south Tibet, Geology, 1999, 27: 831.CrossRefGoogle Scholar
  25. 25.
    Noble, S. R., Searle, M. P., Age of crustal melting and leucogranite formation from U-Pb zircon and monazite dating in the western Himalaya, Zanskar, India, Geology, 1995, 23: 1135.CrossRefGoogle Scholar
  26. 26.
    McCafery, R., Nabelek, J., Role of oblique convergence in the active deformation of the Himalaya and southern Tibetan Plateau, Geology, 1998, 26: 691.CrossRefGoogle Scholar
  27. 27.
    Ratschbacher, L., Frisch, W., Liu, G. et al., Distributed deformation in southern and western Tibet during and after the India-Asia collision, J. Geophys. Res., 1994. 99: 19917.CrossRefGoogle Scholar
  28. 28.
    Harrison, T. M., Copeland, P., Kidd, W. S. F. et al., Raising Tibet, Science, 1992, 255: 1663.PubMedCrossRefGoogle Scholar
  29. 29.
    Pan, Y., Kidd, W. S. F., Nyainqentanghla shear zone. A late Miocene extensional detachment in the southern Tibetan Plateau, Geology, 1993, 20: 775.CrossRefGoogle Scholar
  30. 30.
    Li, J., A discussion on the period, amplitude and type of the uplift of the Qinghai-Xizang Plateau, Scietia Sinica (in Chinese), 1979, 6: 608.Google Scholar
  31. 31.
    Ding, L., Zhong, D., Pan, Y., Fission-track evidence for Neogene to Quaternary uplift of eastern Himalayan Sytaxis, Chinese Science Bulletin (in Chinese), 1995, 40: 1497.Google Scholar
  32. 32.
    Zhong, D., Ding, L., Rising process of the Qinghai-Xizang (Tibet) Plateau and its mechanism, Science in China, Series D, 1996, 39: 369.Google Scholar
  33. 33.
    Pan, Y., Results of modeling experiment on the deformation of Tibetan Plateau, Scientia Geologica Sinica (in press).Google Scholar

Copyright information

© Science in China Press 2002

Authors and Affiliations

  1. 1.Department of GeologyPeking UniversityBeijingChina
  2. 2.Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina

Personalised recommendations