Geochemistry and petrogenesis of Jurassic high Sr/low Y granitoids in eastern China: Constrains on crustal thickness

  • Ge Xiaoyue 
  • Li Xianhua 
  • Chen Zhigang 
  • Li Wuping 


The Jurassic high Sr/low Y granitoids in eastern China are characterized by high Sr/Y (27–166) and La/Yb (14–66) ratios, low abundance in Y (6–21 μg/g) and Yb (0.5-2.0 μg/g), comparable with those of adakites defined by Defant et al. Thus, they were recently considered as adakitic rocks by some researchers. Compared with the typical adakites in circum-Pacific margins, however, these high Sr/low Y granitoids have higher K2O (−3.5%) but lower Al2O3 (−16.0%) as well as lower Mg# (−38) and δSrn (−1.23) values. Furthermore, they show relatively flat HREE patterns with Y/Yb values of −10 close to the chondritic value. These geochemical characteristics indicate a residue mineral assemblage of hornblende, garnet and plagioclase for these high Sr/low Y granitoids melt. Thus, they were generated by partial melting at 9–13 kbar (30–45 km in depth), similar to the Archaean high-Al TTG rather than the modern adakites. Generation of these high Sr/low Y granitoids cannot be considered as evidence for a thickened crust (>50 km) and/or the presence of the “Eastern China Plateau” in Jurassic.


granitoids adakite TTG Jurassic eastern China 


  1. 1.
    Defant, M. J., Drummond, M. S., Derivation of some modern arc magmas by melting of young subducted lithosphere, Nature, 1990, 347: 662.CrossRefGoogle Scholar
  2. 2.
    Gill, J. B., Orogenic Andesite and Plate Tectonics, New York: Springer-Verlag, 1981, 1–390.Google Scholar
  3. 3.
    Defant, M. J., Drummond, M. S., Mount St Helens, potential example of the partial melting of the subducted lithosphere in a volcanic arc, Geology, 1993, 21: 547.CrossRefGoogle Scholar
  4. 4.
    Martin, H., Adakitic magmas: modern analogues of Archaean granitoids, Lithos, 1999, 46: 411.CrossRefGoogle Scholar
  5. 5.
    Smithies, R. H., The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite, Earth Planet. Sci. Lett., 2000, 182: 115.CrossRefGoogle Scholar
  6. 6.
    Kay, R. W., Aleutian magnesium andesites: melts from subducted Pacific oceanic crust, J. Volcanol. Geotherm. Res., 1978, 4: 117.CrossRefGoogle Scholar
  7. 7.
    Mayers, J. D., Frost, C. D., A petrologic investigation of the Adak volcanic center, central Aleutian arc, Alaska, J. Volcanol. Geotherm. Res., 1994, 60: 109.CrossRefGoogle Scholar
  8. 8.
    Morris, P. A., Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan, Geology, 1995, 23: 395.CrossRefGoogle Scholar
  9. 9.
    Stern, C. R., Kilian, R., Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone, Contrib. Mineral. Petrol., 1996, 123: 263.CrossRefGoogle Scholar
  10. 10.
    Gutscher, M. A., Maury, R., Eissen, J. P. et al., Can Slab melting be caused by flat subduction? Geology, 2000, 28: 535.CrossRefGoogle Scholar
  11. 11.
    Yogodzinski, G. M., Kay, R. W., Bolynets, O. N. et al., Magnesian andesite in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge, Geol. Soc. Am. Bull., 1995, 107: 505.CrossRefGoogle Scholar
  12. 12.
    Sajona, F. G., Bellon, H., Maury, R. C. et al., Magmatic response to abrupt changes in geodynamic settings: Pliocene-Quaternary calc-alkaline and Nb-enriched lavas from Mindanao (Philippines), Tectonophysics, 1994, 237: 47.CrossRefGoogle Scholar
  13. 13.
    Petford, N., Atherton, M., Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca batholith, Peru, J. Petrol., 1996, 56: 1491.CrossRefGoogle Scholar
  14. 14.
    Muir, R. J., Weaver, S. D., Bradshaw, J. D., et al., The Cretaceous Separation Point batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere, J. Geol. Soc. (London), 1995, 152: 689.CrossRefGoogle Scholar
  15. 15.
    Castillo, P. R., Janney, P. E., Solidum, R. U., Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting, Contrib. Mineral. Petrol., 1999, 134: 33.CrossRefGoogle Scholar
  16. 16.
    Drummond, M. S., Defant, M. J., A model for trondhjemitetonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons, J. Geophys. Res., 1990, 95: 21503.CrossRefGoogle Scholar
  17. 17.
    Tarney, J., Jones, C. E., Trace element geochemistry of orogenic igneous rocks and crustal growth models, J. Geol. Soc. (London), 1994, 151: 855.CrossRefGoogle Scholar
  18. 18.
    Fowler, M. B., Henney, P. J., Darbyshire, D. P. F. et al., Petrogenesis of high Ba-Sr granites: the Rogart pluton, Sutherland, J. Geol. Soc. (London), 2001, 158: 521.Google Scholar
  19. 19.
    Zhang, Q., Qian, Q., Wang, E. Q. et al., Existence of East China Plateau in mid-late Yanshan period: implication from adakites, Sci. Geol. Sinica (in Chinese), 2001, 36(2): 248.Google Scholar
  20. 20.
    Zhang, Q., Wang, Y., Qian, Q. et al., The characteristics and tectonic-metallogenic significances of the Mesozoic adakites in eastern China, Acta Petrologica Sinica (in Chinese), 2001, 17(2): 236.Google Scholar
  21. 21.
    Wang, Q., Zhao, Z. H., Xiong, X. L. et al., Melting of the underplated basaltic lower crust: Evidence from the Shaxi adakitic sodic quartz diorite-porphyrites, Anhui Province, China, Geochimica (in Chinese), 2001, 30(4): 353.Google Scholar
  22. 22.
    Wang, Q., Xu, J. F., Zhao, Z. H., The summary and comment on research on a new kind of igneous rockadakite, Advance in Earth Sciences (in Chinese), 2001, 16(2): 201.Google Scholar
  23. 23.
    Li, W. P., Li, X. H., Lu, F. X., Genesis and geological significance for the middle Jurassic high Sr and Low Y type volcanic rocks in Fuxin area of west Liaoning, Northeastern China, Acta Petrologica Sinica (in Chinese), 2001, 17(4): 523.Google Scholar
  24. 24.
    Chen, Y. X., Chen, W. J., Mesozoic Volcanic Rocks in Western Liaoning Province and Surrounding Area - Geochronology, Geochemistry and Tectonic Environment, Beijing: Seismic Publishing House, 1997, 1–279.Google Scholar
  25. 25.
    Li, W. P., Lu, F. X., Li, X. H., Genesis of late Jurassic trachyandesite in Western Hills of Beijing and its geological implications, Acta Petrologica et Mineralogica (in Chinese), 2001, 20(3): 247.Google Scholar
  26. 26.
    Xu, B. L., Yan, G. H., Xu, Z. B., Geochemistry and genetic implication of three series of Yanshanian granite in northern Hebei Province, Acta Petrologica Sinica (in Chinese), 1999, 15(2): 208.Google Scholar
  27. 27.
    Ma, C. Q., Yang, K. G., Xu, C. H., Mesozoic potassic magmatism in the Dabie Mountains: implication for exhumation of ultrahigh-pressure metamorphic terranes, Acta Petrologica Sinica (in Chinese), 1999, 15(3): 379.Google Scholar
  28. 28.
    Tang, Y. C., Wu, Y. C., Chu, G. Z. et al., Geology of Copper-Gold Polymetallic Deposits in the Along-Changjiang Area of Anhui Province (in Chinese), Beijing: Geological Publishing House, 1998, 1–349.Google Scholar
  29. 29.
    Defant, M. J., Richerson, M., De Boer, J. Z. et al., Dacite genesis via both slab melting and differentiation: petrogenesis of La Yeguada volcanic complex, Panama, J. Petrol., 1991, 32: 1101.Google Scholar
  30. 30.
    Drummond, M. S., Defant, M. J., Kepezhinskas, P. K., Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas, Trans. R. Soc. Edinb. Earth Sci., 1996, 87: 205.Google Scholar
  31. 31.
    Aguillon-Robles, A., Caimus, T., Benoit, M. et al., Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below southern Baja California? Geological Society of America, 2001, 29: 531.Google Scholar
  32. 32.
    Sajona, F. G., Maury, R. C., Bellon, H. et al., Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines, Geology, 1993, 21: 1007.CrossRefGoogle Scholar
  33. 33.
    Kay, S. M., Ramos, V. A., Marques, M., Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America, J. Geol., 1993, 101: 703.CrossRefGoogle Scholar
  34. 34.
    Rapp, P. R., Heterogeneous source regions for Archean granitoids (eds. de Wit, M. J., Ashwal, L. D.), Greenstone Belts, Oxford: Oxford University Press, 1997.Google Scholar
  35. 35.
    Rapp, P. R., Shimizu, N., Norman, M. D., Applegate, reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa, Chem. Geol., 1999, 160: 335.CrossRefGoogle Scholar
  36. 36.
    Defant, M. J., Jackson, T. E., Drummond, M. S. et al., The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview, J. Geol. Soc. London, 1992, 149: 569.CrossRefGoogle Scholar
  37. 37.
    Martin, H., The Archaean grey gneisses and the genesis of the continental crust (eds. Condie, K. C.), The Archaean Crustal Evolution, Amsterdam: Elsevier, 1995, 205.Google Scholar
  38. 38.
    Sun, S.-S., McDonough, W. F., Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes, (eds. Saunders, A. D., Norry, M. J.), Magmatism in the Ocean Basins, Geol. Soc. Spec. Pub., 1989, 42: 313.Google Scholar
  39. 39.
    Wang, Q., Xu, J. F., Zao, Z. H., et al., The petrogenesis and geodynamic significances of HREE depleted granitoids during Yanshan period in the Dabie Mountains, Acta Petrologica Sinica (in Chinese), 2001, 17(4): 551.Google Scholar
  40. 40.
    Li, W. P., Lu, F. X., Li, X. H. et al., Geochemical features and origin of volcanic rocks of Tiaojishan formation in Western Hills of Beijing, Acta Petrologica et Mineralogica (in Chinese), 2001, 20(2): 123.Google Scholar
  41. 41.
    Roberts, M. P., Clemene, J. D., Origin of high-potassium, calc-alkaline, I-type granitoids, Geology, 1993, 21: 825.Google Scholar
  42. 42.
    Sisson, T. W., Hornblende-melt trace-element partitioning measured by ion microprobe, Chem. Geol., 1994, 117: 331.CrossRefGoogle Scholar
  43. 43.
    Sen, C., Dunn, T., Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: Implications for the origin of adakites, Contrib. Mineral. Petrol., 1994, 117: 394.CrossRefGoogle Scholar
  44. 44.
    Beard, J. S., Lofgren, G. E., Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6, 9 kb, J. Petrol., 1991, 32: 365.Google Scholar
  45. 45.
    Huppert, H. E., Sparks, R. S., The generation of granitic magmas by intrusion of basalt into continental crust, J. Petrol., 1988, 29: 599.Google Scholar
  46. 46.
    Wolf, M. B., Wyllie, P. J., Dehydration-melting of amphibolite at 10 kbar: effects of temperature and time, Contrib. Mineral. Petrol., 1994, 115: 369.CrossRefGoogle Scholar
  47. 47.
    Vielzeuf, D., Schmidt, M. W., Melting relations in hydrous systems revisited: application to metapelites, metagreywackes and metabasalts, Contrib. Mineral. Petrol., 2001, 141: 251.Google Scholar
  48. 48.
    Sorensen, S. S., Petrology of amphibolite-facies mafic and ultramafic rocks from Catalina schist, southern California metamorphism and magmatisation in a subduction zone metamorphic setting, J. Metamorph. Geol., 1988, 6: 405.CrossRefGoogle Scholar
  49. 49.
    Wolde, B., Gore-Gambella Geotraverse Team, Tonalitetrondhjemite-granite genesis by partial melting of newly underplated basaltic crust: an example from the Neoproterozoic Birbir magmatic arc, western Ethiopia, Precambrian Res., 1996, 76: 3.CrossRefGoogle Scholar
  50. 50.
    Norman, M. D., Leeman, W. P., Mertzman, S. A., Granites and rhyolites from the northwestern USA.: temporal variation in magmatic processes and relations to tectonic setting, Trans. R. Soc. Edinb. Earth Sci., 1992, 83: 71.Google Scholar
  51. 51.
    Sun, S.-S., Warren, R. G., Shaw, R. D., Nd isotope study of granites from the Arunta Inlier, central Australia: constraints on geological models and limitation of the method, Precambrian Res., 1995, 71: 301.CrossRefGoogle Scholar
  52. 52.
    Zhao, J.-X., McCulloch, M. T., Geochemical and Nd isotopic systematics of granites from the Arunta Inlier, central Australia: Implications for Proterozoic crustal evolution, (eds. Collins, W. J., Shaw, R. D.), Time Limits on Tectonic Events and Crustal Evolution Using Geochronology: Some Australian Examples, Precambrian Res., 1995, 71: 265.Google Scholar

Copyright information

© Science in China Press 2002

Authors and Affiliations

  • Ge Xiaoyue 
    • 1
  • Li Xianhua 
    • 1
  • Chen Zhigang 
    • 1
  • Li Wuping 
    • 1
  1. 1.Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina

Personalised recommendations