Advertisement

Chinese Science Bulletin

, Volume 47, Issue 11, pp 896–901 | Cite as

Molecular cloning, identification and characteristics of NYD-SP9: Gene coding protein kinase presumably involved in spermatogenesis

  • Xiao Junhua 
  • Yin Lanlan 
  • Li Jianmin 
  • Zu Hu 
  • Zhou Zuomin 
  • Zhao Baige 
  • Sha Jiahao 
Notes
  • 19 Downloads

Abstract

Using cDNA microarray hybridization from a human testicular cDNA library, one gene exhibiting ten-fold difference at expression level between adult and embryo human testes was cloned and named NYD-SP9, which was believed to be involved in spermatogenesis. Southern blot hybridization results showed that NYD-SP9 expressed highly in testis but low in ovary. Protein motif analysis of this cDNA sequence revealed a cluster of phosphorylation sites, indicating its potential involvement in signal pathways during spermatogenesis. Furthermore, one transmembrane helix was predicted in N-terminal region, indicating that putative NYD-SP6 may be served as a transmembrane protein. The proximity of these potential phosphorylation sites to each other indicates that there may be interaction among these sites to regulate spermatogenesis. These findings suggested that protein kinase NYD-SP9 might play a role in male germ cell differentiation.

Keywords

differential expression gene human testis NYD-SP9 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fauser, B. C. J. M., Rutherford, A. J., Strauss, J. F. et al., Molecular Biology in Reproductive Medicine, 1st ed., New York: The Parthenon Publishing Group, 1999, 271.Google Scholar
  2. 2.
    John, R., McCarrey, J. R., Spermatogenesis as a model system for developmental analysis for regulation mechanisms associated with tissue-specific gene expression, Cell & Developmental Biology, 1998, 9: 459.CrossRefGoogle Scholar
  3. 3.
    Pawson, T., Tyrosine kinase signalling pathways, Princess Takamatsu Symp., 1994, 24: 303.PubMedGoogle Scholar
  4. 4.
    Um, J. Y., Choi, B. M., Kim, J. S. et al., Expression of protein kinase C delta gene in germ cells, J. Urol., 1995, 154: 1237.PubMedCrossRefGoogle Scholar
  5. 5.
    Elek, J., Park, K. H., Narayanan, R., Microarray-based expression profiling in prostate tumors, In Vivo, 2000, 14: 173.PubMedGoogle Scholar
  6. 6.
    Rihn, B. H., Mohr, S., McDowell, S. A. et al., Differential gene expression in mesothelioma, FEBS Lett., 2000, 480: 95.PubMedCrossRefGoogle Scholar
  7. 7.
    Nagase, T., Ishfawa, K., Suyama, M. et al., Prediction of the coding sequence of unidentified humane genes, XII. The complete sequence of 100 new cDNA clones from brain which code for large proteins in vivo, DNA Research, 1998, 5: 355.PubMedCrossRefGoogle Scholar
  8. 8.
    Taylor, S. S., cAMP-dependent protein kinase, J. Bio. Chem., 1989, 264: 8443.Google Scholar
  9. 9.
    Gonzalez, G. A., Yamamoto, K. K., Fischer, W. H. et al., A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence, Nature, 1989, 337: 749.PubMedCrossRefGoogle Scholar
  10. 10.
    Cala, S. E., Jones, L. R., Phosphorylation of cardia and skeletal muscle calsequestrin isoforms by Casein kinase II, J. Biol. Chem., 1991, 226: 391.Google Scholar
  11. 11.
    Yip, T. T., Hutchens, T. W., Protein phosphoryaltion: Sequencespecific identification of in vivo phosphorylatoin sites by MALDITOF mass spectrometry, in Techniques in Protein Chemistry IV (ed. Yip, T. T.), California: Academic Press, Inc., 1993, 201.Google Scholar
  12. 12.
    Stover, D. R., Walsh, K. A., A novel method of identifying phosphorylation sites using a thiophosphorylated peptide and ESI-MS, in Techniques in Protein Chemistry IV (ed. Yip, T. T.), California: Academic Press, Inc., 1993, 193.Google Scholar
  13. 13.
    De Jongh, K. S., Rotman, E. I. et al., The identification of phosphorylation sites in large membrane proteins following their isolation by SDS-PAGE, in Techniques in Protein Chemistry IV(ed. Yip, T. T.), California: Academic Press, Inc., 1993, 179.Google Scholar
  14. 14.
    Kueng, P., Nikolova, Z., Djonov, V. et al., A novel family of serine/threonine kinases participating in spermiogenesis, J. Cell Biol., 1997, 139(7): 1851.PubMedCrossRefGoogle Scholar
  15. 15.
    Zini, N., Matteucci, A., Sabatelli, P. et al., Protein kinase C isoforms undergo quantitative variations during rat spermatogenesis and are selectively retained at specific spermatozoon sites, Eur. J. Cell Biol., 1997, 72: 142.PubMedGoogle Scholar
  16. 16.
    Orth, J. M., Qiu, J., Jester, W. F. Jr. et al., Expression of the c-kit gene is critical for migration of neonatal rat gonocytes in vivo, Biology of Reproduciton, 1997, 57: 676.CrossRefGoogle Scholar
  17. 17.
    Glover, T. D., Barratt, C. L. R., Male Fertility & Infertility, 1st ed., Cambridge: Cambridge University Press, 1999, 56.Google Scholar
  18. 18.
    Rossi, P., Sette, C., Dolci, S. et al., Role of c-kit in mammalian spermatogenesis, J. Endo. Invest., 2000, 23: 609.Google Scholar
  19. 19.
    Hunter, T., The phosphorylation of protein on tyrosine: its role in cell growth and disease, Pholos. Trans. R. Soc. Lond. B. Biol. Sci., 1998, 353: 583.CrossRefGoogle Scholar
  20. 20.
    Moteiro, H. P., Sptern, A., Redox modulation of tyrosine phosphorylation-dependent signal transduction pathways, Free Radic Biol. Med., 1996, 21: 323.CrossRefGoogle Scholar
  21. 21.
    Park, K. W., Lee, E. J., Lee, S. et al., Molecular cloning and characterization of a protein tyrosine phosphatase enriched in testis, a putative murine homologue of human PTPMEG, Gene, 2000, 257: 45.PubMedCrossRefGoogle Scholar
  22. 22.
    Yuasa, K., Omori, K., Yanaka, N., Binding and phosphorylation of a novel male germ cell-specific cGMP-dependent protein kinase-anchoring protein by cGMP-dependent protein kinase Ialpha, J. Biol. Chem., 2000, 275: 4897.PubMedCrossRefGoogle Scholar
  23. 23.
    Hertness, E. A., Naz, R. K., Presence and tyrosine phosphorylation of c-met rceptor in humane sperm, J. Abdrol., 1999, 20: 640.Google Scholar
  24. 24.
    Takasaki, A., Hayashi, N., Matsubara, M. et al., Identification of the calmodulin-binding domain of neuron-specific protein kinase C substrate protein CAP-22/NAP-22, Direct involvement of protein myristoylation in calmodulin-target protein interaction, J. Biol. Chem., 1999, 274: 11848.PubMedCrossRefGoogle Scholar
  25. 25.
    Quest, A. F., Chadwick, J. K., Wothe, D. D. et al., Myristoylation of flagellar creatine kinase in the sperm phosphocreatine shuttle is linked to its membrane association properties, J. Biol. Chem., 1992, 267: 15080.PubMedGoogle Scholar
  26. 26.
    Taniguchi, H., Protein myristoylation in protein-lipid and protein-protein interactions, Biophys. Chem., 1999, 82: 129.PubMedCrossRefGoogle Scholar
  27. 27.
    Ken-ichikswa Nagase, T., Suyama, M. et al., Prediction of the coding sequence of unidentified human genes X, The complete sequence of 100 new cDNA clones from brain which can code for large protein in vitro, DNA Research, 1998, 5: 169.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2002

Authors and Affiliations

  • Xiao Junhua 
    • 1
  • Yin Lanlan 
    • 1
  • Li Jianmin 
    • 1
  • Zu Hu 
    • 1
  • Zhou Zuomin 
    • 1
  • Zhao Baige 
    • 2
  • Sha Jiahao 
    • 1
  1. 1.Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
  2. 2.Department of International CooperationState Family Planning CommissionBeijingChina

Personalised recommendations