Chinese Science Bulletin

, Volume 47, Issue 9, pp 705–716 | Cite as

Wavelets in probability and statistics—A review in recent advances

  • Xie Zhongjie 
  • Wong Heung 
  • Wai-Cheung Ip 


The main purpose of this paper is to give a review on recent advances of wavelet in probability and statistics. Many interesting new ideas, new results and new methods are introduced in this review. From many aspects of this paper, probability and statistics researchers may find many new interesting research topics for further studying on wavelets in stochastic processes. New results, such as K-stationarity, wavelet representation of Karhunen processes, hidden periodicities analysis by wavelet approach, heteroscedasticity in wavelet regression, wavelets and neural networks, etc. are introduced in this paper. Comments, discussions and plentiful references are also involved in this review.


wavelets K-stationarity time varying spectral analysis nonlinear modeling wavelet variance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Walter, G. G., Wavelets and Other Orthogonal Systems with Applications, Boca Raton, Florida: CRC Press, 1994.Google Scholar
  2. 2.
    Antoniadis, A., Oppenheim, G., Wavelet and Statistics, New York: Springer-Verlag, 1995.Google Scholar
  3. 3.
    Ogden, R. T., Essential Wavelets for Statistical Applications and Data Analysis, Boston: Birkhäuser, 1997.Google Scholar
  4. 4.
    Wornell, G., Signal Processing with Fractals: A Wavelet-based Approach, PTR, NJ: Prentice Hall, 1996.Google Scholar
  5. 5.
    Percival, D. P., Waiden, A. T., Wavelet in Time Series Analysis, Cambridge: Cambridge University Press, 2000.Google Scholar
  6. 6.
    Flandrin, P., Wavelet analysis and synthesis of FBM, IEEE Trans. Inform. Theory, 1992, 38: 910.CrossRefGoogle Scholar
  7. 7.
    Flandrin, P., Patrice, A., Gonclivs, P., Wavelet, Spectrum Analysis and 1/f Processes, Wavets and Statistics, New York: Springer-Verlag, 1995.Google Scholar
  8. 8.
    Masry, E., The wavelet transform of stochastic processes with stationary increment and its application to fractional Brownian motion, IEEE Trans. Info. Theo., 1993, 39: 260.CrossRefGoogle Scholar
  9. 9.
    Kato, T., Masry, E., On the spectral density of the wavelet transform of fBm, J. of Time Series Analysis, 1999, 20(5): 559.CrossRefGoogle Scholar
  10. 10.
    Wong, P. W., Wavelet decomposition of harmonizable random processes, IEEE Trans. Infor. Theory, 1994, 39: 7.CrossRefGoogle Scholar
  11. 11.
    Donoho, D. L., Johnstone, I. M., Ideal spatial adaptation by wavelet shrinkage, Biometrika, 1994, 84: 425.CrossRefGoogle Scholar
  12. 12.
    Donoho, D. L., Johnstone, I. M., Kerkyacharin, G. et al., Wavelet shrinkage: Asymptotia? J. R. S. S. (B), 1995, 57(2): 301.Google Scholar
  13. 13.
    Donoho, D., Johnstone, I. M., Minimax estimation via wavelet shrinkage, Ann. Statist., 1998, 26: 879.CrossRefGoogle Scholar
  14. 14.
    Brillinger, D. R., Some uses of cumulant in wavelet analysis, Non-parametric Statist., 1996, 6: 93.Google Scholar
  15. 15.
    Ogden, R. T., Parzen, E., Data dependent wavelet thresholding in non-parametric regression with change-point applications, Comput. Statist. and Data Analy., 1996, 22: 53.CrossRefGoogle Scholar
  16. 16.
    Antoniadis, A., Gregoire, G., McKeagu, I. W., Wavelet methods for curve estimation, JASA, 1994, 89(428): 1340.Google Scholar
  17. 17.
    Johnstone, I. M., Silverman, B., Wavelet threshold estimators for data with correlated noise, J. R. S. S., Ser. B, 1997, 59: 319.CrossRefGoogle Scholar
  18. 18.
    Li, Y., Xie, Z., The wavelet detection of the jump and cusp points of a regression function, Acta Mathematicae Applicatac Sinica, 2000, 16(3): 283.CrossRefGoogle Scholar
  19. 19.
    Percival, D. P., On estimation of the wavelet variance, Biometrika, 1995, 82(3): 619.CrossRefGoogle Scholar
  20. 20.
    Cheng, B., Tong, H., A theory of wavelet representation and decomposition for a general stochastic process, Festschrift in Honour of Prof. E. J. Hannan, Berlin: Springer-Verlag, 1996.Google Scholar
  21. 21.
    Li, Y., Xie, Z., The wavelet detection of hidden periodicities in time series, Statist. & Prob. Letters, 1997, 35: 9.CrossRefGoogle Scholar
  22. 22.
    Shibata, R., Takagiwa, M., Consistency of frequency estimates based on the wavelet transform, J. Time Ser. Anal., 1997, 18(6): 641.CrossRefGoogle Scholar
  23. 23.
    Cai, Z., Hurvich, C. M., Tsai, C. L., Score tests for heteroscedasticity in wavelet regression, Biometrika, 1998, 85(1): 229.CrossRefGoogle Scholar
  24. 24.
    Sacks, R., Schneider, K., Fachbereich Mathematik, Universität Kaiserslautern, (preprint).Google Scholar
  25. 25.
    Li, Y., Xie, Z., The wavelet identification of threshold and time delay of threshold AR models, Statist. Sinica, 1999, 1: 153.Google Scholar
  26. 26.
    Zheng, J., Xie, Z., On the Monte-Carlo simulation of the wavelet regression estimator for non-linear time series, Monte Carlo and Quasi-Monte Carlo Methods 2000 (eds. Fang, K. -T., Hickernell, F. J., Niedcrreiter, H.), Berlin: Springer Verlag, 2002, 536–548Google Scholar
  27. 27.
    Zhang, Q. H., Using wavelet network in non-parametric estimation, IEEE Trans. on NN, 1997, 8(2): 227.Google Scholar
  28. 28.
    Gabor, D., Theory of communication, J. Inst. Electr. Engin., 1946, 93(III): 429.Google Scholar
  29. 29.
    Daubechies, I., Ten lectures on wavelets, Philadelphia: SIAM, 1992.Google Scholar
  30. 30.
    Zhang, J., Walter, G. G., A wavelet based K-L-like expansion for wide-sense stationary processes, IEEE Trans. On Sig. Proc, 1994, 42(7): 1737.CrossRefGoogle Scholar
  31. 31.
    Bruce, A., Gao, H. Y., Applied wavelet analysis with S-plus, New York: Springer-Verlag, 1996.Google Scholar
  32. 32.
    Brillinger, D. R., Time Series: Data Analysis and Theory, New York: Holden-Day, 2nd ed., 1981.Google Scholar
  33. 33.
    Priestly, M. B., Spectral Analysis and Time Series, London: Academic Press, 1981.Google Scholar
  34. 34.
    Brockwell, P. J., Davis, R. A., Introduction to Time Series and Forecasting, New York: Springer, 1996.Google Scholar
  35. 35.
    Wang, Y., Jump and sharp cusp detection by wavelets, Biometrika, 1995, 82: 385.CrossRefGoogle Scholar
  36. 36.
    Wang, Y., Change-points via wavelets for indirect data, Statist. Sinica, 1999, 9: 103.Google Scholar
  37. 37.
    Luan, Y., Xie, Z., The wavelet identification for jump points of derivative in regression model, Statistics & Probability Letters, 2001, 53: 167.CrossRefGoogle Scholar
  38. 38.
    Krim, H., Multiresolution analysis of a class of nonstationary processes, IEEE Trans. on Info. Theo., 1995, 41(4): 1010.CrossRefGoogle Scholar
  39. 39.
    Dalhaus, R., Neumann, M. H., von Sacks, R., Nonlinear wavelet estimation of time-varying autoregressive processes, Bernoulli, 1999, 5(5): 873.CrossRefGoogle Scholar
  40. 40.
    Kailath, T., RKHS approach to detection and estimation problem, Part I, IEEE Trans on IT., 17(9): 530.Google Scholar
  41. 41.
    Meyer, Y., Wavelets, Algorithm and Applications, Philadelphia: SIAM, 1993.Google Scholar
  42. 42.
    Delyon, B., Juditsky, A., Estimating wavelet coeffients, Wavelets and Statistics (eds. Antoniadis, A., Oppenheim, G.), New York: Springer-Verlag, 151–185.Google Scholar
  43. 43.
    Kolmogorov, A. N., Stationary sequences in Hilbert Space, Bull. MGU, Ser. Mat, 1941, 2(6): 1.Google Scholar
  44. 44.
    Parzen, E., Regression analysis of continuous parameter time series, Proceedings of the 4th Berkeley Symposium on Math. Statist. and Probability (ed. Neyman, J.), Vol. 1, Berkeley: University of California Press, 1961, 469–490Google Scholar
  45. 45.
    Kawasaki, S., Shibata, R., Weak stationarity of a time series with wavelet representation, Japan Journal of Industrial and Applied Mathematics, 1995, 12(1): 37.CrossRefGoogle Scholar
  46. 46.
    Xie, Z., Wong, H., Ip, W. C., Elementary analysis of wavelet moving average sequences, Proceedings of The East Asian Symposium on Statistics (ed. Hirotsu, C.), Tokyo: The University of Tokyo, Japan, 2000.Google Scholar
  47. 47.
    Rao, M. M., Real and Stochastic Analysis, New York: John Wiley & Sons., 1986.Google Scholar
  48. 48.
    Gladyshev, E. G., Periodically and almost periodically correlation random processes with continuous time parameter, Teor. Veroyatn i Primen, 1963, 8(22): 184.Google Scholar
  49. 49.
    Yaglom, A. M., Correlation theory of stationary and related random functions II, New York: Springer-Verlag, 1987.Google Scholar
  50. 50.
    Xie, Z., Case studies in time series analysis, Singapore: World Scientific, 1993.Google Scholar
  51. 51.
    He, S., On estimating the hidden periodicities in linear time series models, Acta Math. Appl. Sinica, 1987, 3: 168.CrossRefGoogle Scholar
  52. 52.
    Tsatsanis, M. K., Giannakis, G. B., Time-varying system identification and model validation using wavelet, IEEE Trans. on Sig. Proc, 1993, 41(12): 3512.CrossRefGoogle Scholar
  53. 53.
    Pati, Y. C., Krishnaprasad, P. S., Analysis and synthesis of feedforward neural networks using discrete affined wavelet transformations, IEEE Tran. On NN, 1993, 4(1): 73.Google Scholar
  54. 54.
    Yamakawa, T., Uchino, E., Samatsu, T., Wavelet neural networks employing over-complete number of compactly supported non-orthogonal wavelets and their applications, IEEE, 1994: 1391.Google Scholar
  55. 55.
    Boubez, T. I., Peskin, R. L., Wavelet neural network and receptive field partitioning, IEEE Int. Conf. Neural Networks, 1993: 1544.Google Scholar
  56. 56.
    Xie, Z., Wong, H., Ip, C. W. et al., Artificial neural network and its application to exchange rate forecasting, Acta Scientiarum Naturalium Universitatis Pekinensis, 2001, 37(5): 380.Google Scholar
  57. 57.
    Priestly, M. B., Wavelets and time-dependent spectral analysis, J. of Time Ser, Anal., 1996, 17(1): 85.CrossRefGoogle Scholar
  58. 58.
    Tong, H., Lin, K. S., Threshold autoregression, limit cycles and cyclical data, J. Roy. Statist. Soc. Ser. B., 1980, 42: 245.Google Scholar
  59. 59.
    Yang, S., Wu, Y., Time series analysis and engineering applications, Hubei: Huazhong Polytechnic University Press, 1992.Google Scholar
  60. 60.
    Korevaar, J., Mathematical Methods, New York: Academic Press, 1968.Google Scholar
  61. 61.
    Krommal, R., Tarter, M., The estimation of probability densities and cumulatives by Fourier series methods, JASA, 1968, 63: 925.Google Scholar
  62. 62.
    Wahba, G., Interpolating spline methods for density estimation in equispaced knots, Ann. Statist., 1975, 3: 30.CrossRefGoogle Scholar
  63. 63.
    Schwartz, S. C., Estimation of a probability density by an orthogonal series, Ann. Math. Statist, 1964, 38: 1261.CrossRefGoogle Scholar
  64. 64.
    Walter, G. G., Properties of Hermite series estimation of probability density, Ann. Stat., 1977, 5: 1258.CrossRefGoogle Scholar
  65. 65.
    Huang, S. Y., Density estimation by wavelet-based reproducing kernels, Statistica Sinica, 1999, 9: 137.Google Scholar

Copyright information

© Science in China Press 2002

Authors and Affiliations

  • Xie Zhongjie 
    • 1
  • Wong Heung 
    • 2
  • Wai-Cheung Ip 
    • 2
  1. 1.School of Mathematical SciencesPeking UniversityBeijingChina
  2. 2.Department of Applied MathematicsThe Hong Kong Polytechnic UniversityHong KongChina

Personalised recommendations