Advertisement

Chinese Science Bulletin

, Volume 47, Issue 8, pp 664–667 | Cite as

A correlation method of detecting and estimating interactions of QTLs

  • Zhongli Hu
  • Qixin Sun
  • Xiufu Zhang
  • Yunchun Song
  • Qifa Zhang
Notes
  • 8 Downloads

Abstract

More and more studies demonstrate that a great deal of interactions among the quantitative trait loci (QTLs) are far more than those detected by single markers. A correlation method was proposed for estimating the interactions of multiple QTLs detected by multi-markers in several mapping populations. Genetic implication of this method and usage were discussed.

Keywords

quantitative trait loci epistasis molecular marker correlation method multiple regression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simpson, S. P., Detection of linkage between quantitative trait loci and RFLP using inbred lines, Theor. Appl. Genet., 1989, 77: 815.CrossRefGoogle Scholar
  2. 2.
    Soller, M., Brody, T., Geniz, A., On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines, Theor. Appl. Genet., 1976, 47: 35.CrossRefGoogle Scholar
  3. 3.
    Weller, J. I., Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic marker, Biometrics, 1986, 42: 627.PubMedCrossRefGoogle Scholar
  4. 4.
    Lao, Z. W., Woolliams, J. A., Estimation of genetic parameters using linkage between a marker gene and a locus underlying a quantitative character in F2 population, Heredity, 1993, 70: 245.CrossRefGoogle Scholar
  5. 5.
    Zhang, X. F., Mosjidis, J. A., Hu, Z. L., Methods for detection and estimation of linkage between a marker locus and quantitative trait loci, Plant Breeding, 1992, 109: 35.CrossRefGoogle Scholar
  6. 6.
    Hu, Z. L., Zhang, X. F., Xie, C. et al., A correlation method for detecting and estimating linkage between a marker locus and a quantitative trait locus using inbred lines, Theor. Appl. Genet., 1995, 90: 1074.Google Scholar
  7. 7.
    Hu, Z. L., Zhang, Z. H., Zhang, X. F., A correlation method for mapping quantitative trait loci in doubble haploid population using flanking markers, J. Biomathematics, 1998, 13(3): 365.Google Scholar
  8. 8.
    Lander, E. S., Botstein, D., Mapping mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics, 1989, 121: 185.PubMedGoogle Scholar
  9. 9.
    Zeng, Z. B., Precision mapping of quantitative trait loci, Genetics, 1994, 136: 1457.PubMedGoogle Scholar
  10. 10.
    Li, Z. C., Pinson, S. R., Park, W. D. et al., Interaction for three grain yield components in rice, Genetics, 1997, 145: 453.PubMedGoogle Scholar
  11. 11.
    Yu, S. B., Li, J. X., Xu, C. G. et al., Importance of interaction as the genetic basis of he terosis in an elite rice hybrid, Proc. Natl. Acad. Sci. USA, 1997, 94: 9226.PubMedCrossRefGoogle Scholar
  12. 12.
    Chase, K., Adler, F. R., Lark, K. G., Epistat: A computer program for identifying and testing interactions between pairs of quantitative trait loci, Theor. Appl. Genet., 1997, 94: 724.CrossRefGoogle Scholar
  13. 13.
    Haley, C. S., Knott, S. A., A simple regression method for mapping quantitative trait loci in line crosses using flanking markers, Heredity, 1992, 69: 315.PubMedGoogle Scholar
  14. 14.
    Cockerham, C. C., Zeng, Z. B., Design III with marker loci, Genetics, 1996, 143: 1437.PubMedGoogle Scholar
  15. 15.
    Liu, K. D., Wang, J., Li, H. B. et al., A genome-wide analysis of wide compatibility in rice and the precise location of the 5S locus in the molecular map, Theor. Appl. Genet., 1997, 95: 809.CrossRefGoogle Scholar
  16. 16.
    Wu, P., Zhang, G., Huang, N. et al., Non-allelic interaction conditioning spikelet sterility in an F2 population of indica/japonica cross in rice, Theor. Appl. Genet, 1995, 91: 825.Google Scholar
  17. 17.
    Holland, J. B., Moser, H. S., O’Donoughue, L. S. et al., QTLs and Epistasis associated with vernalization responses in Oat, Crop Science, 1997, 37: 1306.Google Scholar
  18. 18.
    He, P., Li, J. Z., Zhu, L. H., The interaction between quantitative trait loci for anther culturability in rice, Acta Genetica Sinica, 1999, 26(5): 524.Google Scholar
  19. 19.
    Mather, K., Jinks, J. L., Biometrical Genetics, 2nd ed., London: Chapman and Hall Ltd., 1982, 65.Google Scholar
  20. 20.
    Haldane, J. B. S., Waddington, C. H., Inbreeding and linkage, Genetics, 1931, 16: 357.PubMedGoogle Scholar
  21. 21.
    Wang, D. L., Zhu, J., Li, Z. K. et al., Mapping QTLs with epistatic effects and QTL X environment interactions by mixed linear model appproches, Theor. Appl. Genet., 1999, 99: 1255.CrossRefGoogle Scholar
  22. 22.
    Kao, C. H., Zeng, Z. B., Teasdale, R. D., Multiple interval mapping for quantitative trait loci, Genetics, 1999, 152: 1203.PubMedGoogle Scholar
  23. 23.
    Mo, H. D., Advance in quantitative genetics—QTL mapping and its application, Scientia Agriculture Sinica, 1996, 29(2): 8.Google Scholar
  24. 24.
    van Oojen, Van, J. W., Accuracy of mapping quantitative trait loci in autogamous species, Theor. Appl. Genet., 1992, 84: 803.Google Scholar

Copyright information

© Science in China Press 2002

Authors and Affiliations

  • Zhongli Hu
    • 1
    • 2
  • Qixin Sun
    • 3
  • Xiufu Zhang
    • 4
  • Yunchun Song
    • 1
  • Qifa Zhang
    • 2
  1. 1.Key Laboratory of MOE for Developmental BiologyWuhan UniversityWuhanChina
  2. 2.National Key Laboratory of Crop Genetic ImprovementHuazhong Agriculture UniversityWuhanChina
  3. 3.Department of Plant Genetics and BreedingAgricultural University of ChinaBeijingChina
  4. 4.Department of Poultry ScienceAuburn UniversityUSA

Personalised recommendations