Chinese Science Bulletin

, Volume 47, Issue 8, pp 641–643 | Cite as

Statistical properties for the vibrational energy levels of OCS

  • Daiqian Xie
  • Yuhui Lu


A potential energy surface for the electronic ground state of carbonyl sulfide was optimized by using a self-consistent configuration-interaction method and involving the recently observed vibrational band origins up to 8000 cm−1. With the optimized potential, the vibrational energy levels of OCS up to 15000 cm−1 were computed using the discrete variable representation method and Lanczos algorithm. Approximately 480 vibrational energy levels were identified. The statistical investigation showed that the vibrational energy levels of OCS up to 15000 cm−1 are largely regular.


OCS potential energy surface vibrational spectra statistical property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rbaihi, E., Belafhal, A., Auwera, J. V. et al., Fourier transform spectroscopy of carbonyl sulfide from 4800 to 8000 cm−1 and new global analysis of 16O12C32S, J. Mol. Spectrosc., 1998, 191: 32.PubMedCrossRefGoogle Scholar
  2. 2.
    Nairn, S., Fayt, A., Bredohl, H. et al., Fourier transform spectroscopy of carbonyl sulfide from 3700 to 4800 cm−1 and selection of a line-pointing program, J. Mol. Spectrosc., 1998, 192: 91.CrossRefGoogle Scholar
  3. 3.
    Zuniga, J., Bastida, A., Alacid, M. et al., Excited vibrational states and potential energy function for OCS determined using generalized internal coordinates, J. Chem. Phys., 2000, 113: 5695.CrossRefGoogle Scholar
  4. 4.
    Lu, Y., Zhou, Y., Xie, D. et al., Potential energy surface and vibrational spectrum of OCS, Acta Chimica Sinica, 2000, 58: 1516.Google Scholar
  5. 5.
    Ma, G., Guo, H., Quantum calculations of highly excited vibrational spectrum of sulfur dioxide. II. Normal to local mode transition and quantum stochasticity, J. Chem. Phys., 1999, 111: 4032.CrossRefGoogle Scholar
  6. 6.
    Echave, J., Clary, D. C., Potential optimized discrete variable representation, Chem. Phys. Lett., 1992, 190: 225.CrossRefGoogle Scholar
  7. 7.
    Cullum, J., Willoughby, R. A., Computing eigenvlaues of very large symmetric matrixeds—An implementation of a Lanczos algorithm with no reorthgonalization, J. Comput. Phys., 1981, 44: 329.CrossRefGoogle Scholar
  8. 8.
    Haller, E., Köppel, H., Cederbaum, L. S., On the statistical behaviour of molecular vibronic energy levels, Chem. Phys. Letters, 1983, 101: 215.CrossRefGoogle Scholar
  9. 9.
    Dyson, F. J., Mehta, M. L., Statistical theory of the energy levels of complex systems. IV, J. Math. Phys., 1963, 4: 701.CrossRefGoogle Scholar
  10. 10.
    Pak, Y., Woods, R. C., Spectroscopic constants and potential energy functions of OCC1+, ONP, ONS+, ArCN+, OCS, and NCC1 using the coupled cluster method, J. Chem. Phys., 1997, 107: 5094.CrossRefGoogle Scholar
  11. 11.
    Johnson, B. R., New numerial methods applied to solving the one-dimensional eigenvalue problem, J. Chem. Phys., 1977, 67: 4086.CrossRefGoogle Scholar
  12. 12.
    Jensen, P., A new morse oscillator-rigid bender internal dynamics (MORBID) hamiltonian for triatomic molecules, J. Mol. Spec., 1988, 128: 478.CrossRefGoogle Scholar
  13. 13.
    Peterson, K. A., Mayrhofer, R. C., Woods, R. C., Spectroscopic properties of OCS and OCC1+ by Moller-Plesset perturbation theory and configuration interaction, J. Chem. Phys., 1991, 94: 431.CrossRefGoogle Scholar
  14. 14.
    Colbert, D. T., Miller, W. H., A novel discret variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method, J. Chem. Phys., 1992, 96: 1982.CrossRefGoogle Scholar
  15. 15.
    Hornberger, C., Boor, B., Stuber, R. et al., Sensitive overtone spectroscopy of carbonyl sulfide between 6130 and 6650 cm−1 and at 12000 cm−1, J. Mol. Spectrosc., 1996, 179: 237.CrossRefGoogle Scholar
  16. 16.
    Tranchart, S., Bachir, I. H., Huet, T. R. et al., High-resolution laser photoacoustic spectroscopy of OCS in the 12000–13000 cm−1 region, J. Mol. Spectrosc., 1999, 196: 265.PubMedCrossRefGoogle Scholar
  17. 17.
    Berry, M.V., Semiclassical theory of spectral rigidity, Proc. Royal Soc. London, 1985, A400: 229.Google Scholar
  18. 18.
    Ma, G., Chen, R., Guo, H., Quantum calculations of highly excited vibrational spectrum of sulfur dioxide, I. Eigenenergies and assignments up to 15000 cm−1, J. Chem. Phys., 1999, 110: 8408.CrossRefGoogle Scholar
  19. 19.
    Skokov, S., Qi, J., Bowman, J. M. et al., Accurate variational calculations and analysis of the HOCl vibrational energy spectrum, J. Chem. Phys., 1998, 109: 10273.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2002

Authors and Affiliations

  1. 1.Institute of Theoretical and Computational Chemistry, Department of ChemistryNanjing UniversityNanjingChina
  2. 2.Department of ChemistrySichuan UniversityChengduChina

Personalised recommendations