Skip to main content
Log in

Identification of auxin responsive genes in Arabidopsis by cDNA array

  • Notes
  • Published:
Chinese Science Bulletin

Abstract

The plant hormone auxin influences a variety of developmental and physiological processes. But the mechanism of its action is quite unclear. In order to identify and analyze the expression of auxin responsive genes, a cDNA array approach was used to screen for genes with altered expression from Arabidopsis suspension culture after IAA treatment and was identified 50 differentially expressed genes from 13824 cDNA clones. These genes were related to signal transduction, stress responses, senescence, photosynthesis, protein biosynthesis and transportation. The results provide the molecular evidence that auxin influences a variety of physiological processes and pave a way for further investigation of the mechanism of auxin action. Furthermore, we found that the expression of a ClpC (regulation subunit of Clp protease) was repressed by exogenous auxin, but increased in dark-induced senescing leaves. This suggests that ClpC may be a senescence-associated gene and can be regulated by auxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walker, L., Estelle, M., Molecular mechanisms of auxin action, Curr. Opin. Plant Biol., 1998, 1: 434.

    Article  Google Scholar 

  2. Abel, S., Theologis, A., Early genes and auxin action, Plant Physiol., 1996, 111: 9.

    Article  Google Scholar 

  3. Buchanan-Wollaston, V., The molecular biology of leaf senescence, J. Exp. Bot., 1997, 48: 181.

    Article  Google Scholar 

  4. Shanklin, J., De Witt, N. D., Flanagan, J. M., The stroma of higher plant plastids contain ClpP and ClpC, functional homologs of Escherichia coli ClpP and ClpA: An archetypal two-component ATP-dependent protease, Plant cell, 1995, 7: 1713.

    Google Scholar 

  5. Nakabayashi, K., Ito, M., Kiyosue, T. et al., Identification of clp genes expressed in senescing Arabidopsis leaves, Plant Cell Physiol., 1999, 40: 504.

    Article  Google Scholar 

  6. Hu, Y., Han, C., Mou, Z. et al., Monitoring gene expression by cDNA array, Chinese Science Bullettin, 1999, 44: 441.

    Article  Google Scholar 

  7. Hu, Y., Bao, F., Li, J., The promotive effect of brassinosteroids on cell division involves a distinct cycD3-induction pathway in Arabidopsis, Plant J., 2000, 24: 693.

    Article  Google Scholar 

  8. Wadsworth, G., Redinbaugh, M., Scandalios, J., A procedure for small-scare isolation of plant RNA suitable for RNA blot analysis, Anal. Biochem., 1988, 172: 279.

    Article  Google Scholar 

  9. Church, G., Gilbert, W., Genomic sequencing, Proc. Natl. Acad. Sci. USA, 1984, 81: 1991.

    Article  Google Scholar 

  10. van der Zaal, E., Memelink, J., Mennes, A. et al., Auxin-induced mRNA species in tobacco cell cultures, Plant Mol. Biol., 1987, 10: 145.

    Article  Google Scholar 

  11. Hu, Y., Wang, Z., Wang, Y. et al., Identification of brassinosteroid responsive genes in Arabidopsis by cDNA array, Science in China, Series C, 2001, 44(6): 637.

    Article  Google Scholar 

  12. Leng, Q., Mercier, R. W., Yao, W. et al., Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel, Plant Physiol., 1999, 121: 753.

    Article  Google Scholar 

  13. Zagotta, W. N., Siegelbaum, S. A., Structure and function of cyclic nucleotide-gated channels, Annu. Rev. Neurosci., 1996, 19: 235.

    Article  Google Scholar 

  14. Ulmasov, T., Ohmiya, A., Hagen, G. et al., The soybean GH2/4 gene that encodes a glutathione S-transferase has a promoter that is activated by a wide range of chemical agents, Plant Physiol., 1995, 108: 919.

    Article  Google Scholar 

  15. Rojo, E., Titarenko, E., Leon, J. et al., Reversible protein phosphorylation regulates jasmonic acid-dependent and -independent wound signal transduction pathways in Arabidopsis thaliana, Plant J., 1998, 13: 153.

    Article  Google Scholar 

  16. Bartel, B., Fink, G. R., Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, 1994, 91: 6649.

    Article  Google Scholar 

  17. Mizoguchi, T., Irie, K., Hirayama, T. et al., A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, 1996, 93: 765.

    Article  Google Scholar 

  18. van der Biezen, E., Sun, J., Coleman, M. J. et al., Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant signaling, Proc. Natl. Acad. Sci. USA, 2000, 97: 3747.

    Article  Google Scholar 

  19. Guan, L. M., Zhao, J., Scandalios, J. G., Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response, Plant J., 2000, 22: 87.

    Article  Google Scholar 

  20. Seki, M., Narusaka, M., Abe, H. et al., Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray, Plant Cell, 2001, 13: 61.

    Google Scholar 

  21. Deak, M., Horvath, G., Davletova, S. et al., Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens, Nature Biotech., 1998, 17: 192.

    Google Scholar 

  22. Bernhard, W. R., Matile, P., Differential expression of glutamine synthetase genes during the senescence of Arabidopsis thaliana rosette leaves, Plant Sci., 1994, 98: 7.

    Article  Google Scholar 

  23. Hirayama, T., Shinozaki, K., A cdc5 + homolog of a higher plant, Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, 1996, 93: 13371.

    Article  Google Scholar 

  24. Brenner, M. L., Cheikh, N., The role of hormones in photosynthate partitioning and seed filling. In: Davies, P. J. ed., Plant hormones: Physiology, Biochemistry and Molecular Biology, Dordrecht: Kluwer academic publishers, 1995, 649.

    Google Scholar 

  25. Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K., Characterization of cDNA for a dehydration-inducible gene that encoded a Clp-A, -B like protein in Arabidopsis thaliana L. Biochem. Biophys. Res., 1993, 196: 1214.

    Article  Google Scholar 

  26. Moore, T., Keegstra, K., Characterization of a cDNA clone encoding a chloroplast-targeted Clp homologue, Plant Mol. Biol., 1993, 21: 525.

    Article  Google Scholar 

  27. Schaffer, A. A., Ryan, C. A., Cloning of a tomato cDNA (GenBank L38581) encoding the proteolytic subunit of a Clp-like energy dependent protease, Plant physiol., 1995, 108: 1341.

    Google Scholar 

  28. Weaver, L. M., Gan, S., Quirino, B. et al., A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment, Plant Mol. Biol., 1998, 37: 455.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jiayang.

About this article

Cite this article

Fang, B., Yuxin, H. & Jiayang, L. Identification of auxin responsive genes in Arabidopsis by cDNA array. Chin.Sci.Bull. 47, 548–552 (2002). https://doi.org/10.1360/02tb9126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02tb9126

Keywords

Navigation