Chinese Science Bulletin

, Volume 47, Issue 1, pp 38–43 | Cite as

Transcritption regulation of soybean ribulose-1,5-bisphosphate carboxylase small subunit gene by external factors

  • Chaoying He
  • Weiquan Wang
  • Yang Dongfang
  • Jinsong Zhang
  • Junyi Gai
  • Shouyi Chen


Ribulose-1,5-bisphosphate carboxylase small subunit gene (rbcS) is present with multi-gene family in plant genome. In Glycine max, the rbcS polypeptide (EC4.1.1.39) is encoded by a gene family containing 4–8 members. Three full-length rbcS cDNA clones were isolated and characterized from soybean seedlings, and both of their nucleotide and amino acid sequences showed high similarity. Differential accumulation of the rbcS mRNA was observed among roots, hypocotyls, cotyledons, epicotyls and leaves. The rbcS genes were up-regulated by various external factors such as salicylic acid (SA), salt stress and drought stress. The expression level of rbcS genes after being treated by 2.0 mmol/L SA and 0.4% NaCl, respectively, is 2.5–3.0-fold as high as that of control sample. Moreover, soybean rbcS mRNA was accumulated with diurnal variation but easily influenced by light and low temperature.


soybean ribulose-1 5-bisphosphate carboxylase small subunit gene (rbcSsalicylic acid water stress diurnal variation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Keegstra, K., Transport and routing of proteins into chloroplasts, Cell, 1989, 56: 247.CrossRefGoogle Scholar
  2. 2.
    Dean, C., Pichersky, E., Dunsmuir, P., Structure evolution and regulation of rbcS genes in higher plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1989, 40: 415.CrossRefGoogle Scholar
  3. 3.
    Krebbers, E., Seurinck, J., Herdies, L. et al., Four genes in two diverged subfamilies encode the ribulose-1,5-bisphosphate carboxylase small subunit polypeptides of Arabidopsis thaliana, Plant Mol. Biol., 1988, 11: 745.CrossRefGoogle Scholar
  4. 4.
    DeRocher, E. J., Quigley, F., Mache, R. et al., The six genes of the Rubisco small subunit multigene family from Mesembryanthemum crystallinum, a facultative CAM plant, Mol. Gen. Genet., 1993, 239: 450.CrossRefGoogle Scholar
  5. 5.
    Coruzzi, G., Broglie, R., Edwards, C. et al., Tissue-specific and light-regulated expression of a pea nuclear gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase, EMBO J., 1984, 3: 1671.Google Scholar
  6. 6.
    Ruddle, S. J., Zielinski, R. E., Alterations in barely ribulose-1,5-bisphosphate carboxylase/oxygenase activase gene expression during development and in response to illumination, J. Biol. Chem., 1991, 266: 14802.Google Scholar
  7. 7.
    Knight, M. R., Jenkins, G. I., Genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in Phaseolus vulgaris L: nucleotide sequence of cDNA clones and initial studies of expression, Plant Mol. Biol., 1992, 18: 567.CrossRefGoogle Scholar
  8. 8.
    Shirley, B. W., Berry-Lowe, S. L., Rogers, S. G. et al., 5′ proximal sequences of a soybean ribulose-1,5-bisphosphate carboxylase small subunit gene direct light and phytochrome controlled transcription, Nucleic Acids Res., 1987, 15: 6501.CrossRefGoogle Scholar
  9. 9.
    Pilgrim, M. L., McClung, C. R., Differential involvement of the circadian clock in the expression of genes required for ribulose-1,5-bisphosphate carboxylase/oxygenase synthesis assembly and activation in Arabidopsis thianliana, Plant Physiol., 1993, 103: 553.Google Scholar
  10. 10.
    Chen, S. Y., Zhu, L. H., Hong, J. et al., Molecular biological identification of a rice salt tolerant line, Acta Bot. Sin., 1991, 33: 569.Google Scholar
  11. 11.
    Zhang, J. S., Gu, J., Liu, F. H. et al., A gene encoding a truncated large subunit of Rubisco is transcribed and salt-inducible in rice, Theor. Appl. Genet., 1995, 91: 361.CrossRefGoogle Scholar
  12. 12.
    He, C. Y., Wu, X. L., Zhang, J. S. et al., Isolation and characterization of a mitochondrial atp6 gene from soybean [Glycine max (L.) Merr.], Acta Bot. Sin., 2001, 43 (1): 51.Google Scholar
  13. 13.
    Birnstiel, M. L., Busslinger, M., Strub, K., Transcription termination and 3′ processing: the end is in site! Cell, 1985, 41: 349.CrossRefGoogle Scholar
  14. 14.
    Fluhr, R., Moses, P., Morelli, G. et al., Expression dynamics of the pea rbcS multigene family and organ distribution of the transcripts, EMBO J., 1986, 5: 2063.Google Scholar
  15. 15.
    Delaney, T. P., Uknes, S., Vernoij, B. et al., A central role of salicylic acid in plant disease resistance, Science, 1994, 266: 1247.CrossRefGoogle Scholar
  16. 16.
    Martinez, C., Baccou, J. C., Bresson, E. et al., Salicylic acid mediated by the oxidative burst is a key molecule in local and systemic responses of cotton challenged by an avirulent race of Xanthomonas campestris pv malvacearu, Plant Physiol., 2000, 122: 757.CrossRefGoogle Scholar
  17. 17.
    Xie, Z. X., Chen, Z. X., Salicylic acid induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells, Plant Physiol., 1999, 120: 217.CrossRefGoogle Scholar
  18. 18.
    Streusand, V. J., Portis, A. R. Jr., Rubisco activase mediated ATP-dependent activation of ribulose bisphosphate carboxylase, Plant Physiol., 1987, 85: 152.CrossRefGoogle Scholar
  19. 19.
    Piechulla, B., “Circadian clock” directs the expression of plant genes, Plant Mol. Biol., 1993, 22: 533.CrossRefGoogle Scholar
  20. 20.
    Liu, Z., Taub, C. C., McClung, C. R., Identification of an Arabidopsis thaliana ribulose-1,5-bisphosphate carboxylase/oxygenase activase (RCA) minimal promoter regulated by light and the circadian clock, Plant Physiol., 1996, 112: 43.CrossRefGoogle Scholar
  21. 21.
    Carpenter, C. D., Kreps, J. A., Simon, A. E., Genes encoding glycine-rich Arabidopsis thalian proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm, Plant Physiol., 1994, 104: 1015.CrossRefGoogle Scholar
  22. 22.
    Martino-Catt, S., Ort, D. R., Low temperature interrupts circadian regulation of transcriptional activity in chilling-sensitive plants, Proc. Natl. Acad. Sci. USA, 1992, 89: 3731.CrossRefGoogle Scholar
  23. 23.
    Nantel, A. M., Lafleur, F., Boivin, R. et al., Promoter for a Brassica napus ribulose bisphosphate carboxylase/oxygenase small subunit gene binds multiple nuclear factors and contains a negative-strand open reading frame encoding a putative transmembrane protein, Plant Mol. Biol., 1991, 16: 955.CrossRefGoogle Scholar
  24. 24.
    Fiebig, C., Link, G., 5′-upstream cis-elements and binding factor (s) potentially involved in light-regulated expression of a Brassica napus rbcS gene, Curr. Genet., 1992, 21: 161.CrossRefGoogle Scholar
  25. 25.
    Zhang, J. S., Xie, C., Li, Z. Y. et al., Expression of the plasma membrane H+-ATPase gene in response to salt stress in a rice salt-tolerant mutant and its original variety, Theor. Appl. Genet. 1999, 99: 1006.CrossRefGoogle Scholar
  26. 26.
    Li, Z. Y., Chen, S. Y., Isolation and characterization of a saltand drought-inducible gene for S-adenosylmethionine decarboxylase from wheat (Triticum aesstivum L.), J. Plant Physiol., 2000, 156: 386.Google Scholar

Copyright information

© Science in China Press 2002

Authors and Affiliations

  • Chaoying He
    • 1
  • Weiquan Wang
    • 1
  • Yang Dongfang
    • 1
  • Jinsong Zhang
    • 1
  • Junyi Gai
    • 2
  • Shouyi Chen
    • 1
  1. 1.Plant Biotechnology Laboratory, Institute of GeneticsChinese Academy of SciencesBeijingChina
  2. 2.National Center for Soybean Improvement, Soybean Research InstituteNanjing Agricultural UniversityNanjingChina

Personalised recommendations