Advertisement

MRF based construction of statistical operator and its application

  • Li Hongliang 
  • Liu Guizhong 
  • Li Yongli 
  • Hou Xingsong 
Article

Abstract

Based on the Markov random field (MRF) theory, a new nonlinear operator is defined according to the statistical information in the image, and the corresponding 2D nonlinear wavelet transform is also provided. It is proved that many detail coefficients being zero (or almost zero) in the smooth gray-level variation areas can be achieved under the conditional probability density function in MRF model, which shows that this operator is suitable for the task of image compression, especially for lossless coding applications. Experimental results using several test images indicate good performances of the proposed method with the smaller entropy for the compound and smooth medical images with respect to the other nonlinear transform methods based on median and morphological operator and some well-known linear lifting wavelet transform methods (5/3, 9/7, and S+P).

Keywords

nonlinear wavelet transform MRF statistical operator 

References

  1. 1.
    Adams, M. D., Kossentini, F., Reversible integer-to-integer wavelet transforms for image compression: performance evaluation and analysis, IEEE Trans. Image Processing, Jun. 2000, 9(6): 1010–1024.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Grangetto, M., Magli, E., Martina, M. et al., Optimization and implementation of the integer wavelet transform for image coding, IEEE Trans. Image Processing, Jun. 2000, 11(6): 596–604.CrossRefGoogle Scholar
  3. 3.
    Sweldens, W., The lifting scheme: A new philosophy in biorthogonal wavelet constructions. Proc. SPIE Wavelet Applications Signal Image Processing III, New York: SPIE, the International Society for Optical Engineering, 1995, Vol. 2569, 68–79.Google Scholar
  4. 4.
    Goutsias, J., Heijmans, H. J. A. M., Nonlinear multiresolution signal decomposition sechemes—Part I: Morphological pyramids, IEEE Trans. Image Processing, Nov. 2000, 9(11): 1862–1876.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Heijmans, H. J. A. M., Goutsias, J., Nonlinear multiresolution signal decomposition sechemes—Part II: Morphological wavelets, IEEE Trans. Image Processing, Nov. 2000, 9(11): 1897–1913.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cha, H., Chaprarro, L. F., Adaptive morphological representation of signals: Polynomial and wavelet methods, Multidimenstional Systems and Signal Processing, 1997, 8: 249–271.MATHCrossRefGoogle Scholar
  7. 7.
    Van den Boomgaard, R., Smeulders, A., The morphological structure of images: the differential equations of morphological scale-space, IEEE Trans. Image Processing, 1994, 16(11): 1101–1113.Google Scholar
  8. 8.
    Brockett, R. W., Maragos, P., Evolution equations for continuous-scale morphological filtering, IEEE Trans. Image Processing, 1994, 42(12): 3377–3385.CrossRefGoogle Scholar
  9. 9.
    Jackway, P. T., Deriche, M., Scale-space properties of the multiscale morphological dilation-erosion, IEEE Trans. Pattern Analysis and Machine Intelligence, 1996, 18(1): 38–51.CrossRefGoogle Scholar
  10. 10.
    Besag, J., Spatial interaction and the statistical analysis of lattice systems (with discussion), J. Royal Statist. Soc, Series B, 1972, 36: 192–326.MathSciNetGoogle Scholar
  11. 11.
    Ceman, S., Geman, D., Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Analysis and Machine Intelligence, 1984, vol. PAMI-6, 721–741.Google Scholar
  12. 12.
    Derin, H., Elliott, H., Modeling and segmentation of noisy and textured images using gibbs random field, IEEE Trans. Pattern Analysis and Machine Intelligence, 1987, vol. PAMI-9, 39–55.Google Scholar
  13. 13.
    Cross, G. R., Jain, A. K., Markov random field texture models, IEEE Trans. Pattern Analysis and Machine Intelligence, 1983, vol. PAMI-5, No. 1: 721–741.CrossRefGoogle Scholar
  14. 14.
    Pappas, T. N., An adaptive clustering algorithm for image segmentation, IEEE Trans. Signal Processing, 1992, 40(4): 901–914.CrossRefGoogle Scholar
  15. 15.
    Kretzmer, E. R., Statistics of television signals, The Bell System Technical Journal, July 1952, 31(4): 7551–7763.Google Scholar
  16. 16.
    Calderbank, A. R., Daubechies, I., Sweidens, W. et al., Wavelet transforms that map integers to integers, J. Appl. Comput. Harmon. Anal., 1998, 5(3): 332–369.MATHCrossRefGoogle Scholar
  17. 17.
    Said, A., Pearlman, W. A., An Image multiresolution representation for lossless and lossy compression, IEEE Trans. Image Processing, Sep. 1996, 5(9): 1303–1310.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  • Li Hongliang 
    • 1
  • Liu Guizhong 
    • 1
  • Li Yongli 
    • 1
  • Hou Xingsong 
    • 1
  1. 1.School of Electronics and Information EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations