Skip to main content
Log in

Experimental studies of electrical conductivities and P-wave velocities of gabbro at high pressures and high temperatures

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

The P-wave velocities and electrical conductivities of gabbro were measured using ultrasonic transmission method and impedance spectroscopy from room temperature to 1100°C at 1–2 GPa, and the factors controlling the P-wave velocity and the microscopic conductance mechanisms of the rock were analyzed. The experimental results show that the P-wave velocities of gabbro drop abruptly at temperatures of 800-850°C and under pressures of 1–2 GPa due to the occurrence of grain boundary phases and dehydration melting; however, the electrical conductivities and electronic conduction mechanisms have not changed obviously at temperatures of 800–850°C. At temperatures Below 680°C, only one impedance arc (I) corresponding to grain interior conduction occurs at frequencies between 12 Hz and 105 Hz, the second arc (II) corresponding to grain boundary conduction occurs at temperatures above 680°C. The total conductivity of this rock is dominated by the grain interior conductivity as the occurrence of grain boundary conduction has a small effect on the total conductivity. The laboratory-measured velocities are consistent with the average P-wave velocity observations of lower crust and upper mantle. The conductivity values correspond well with the gabbroite composition of the lower crust and upper mantle; however, they are about 1-2 orders of magnitude lower than MT data from the high conductive layers. The experiments confirm that the dehydration of hydrous minerals can induce the partial melting, and the low seismic velocity zones might be correlated with the high conductive layers if partial melting occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zijl, J., A deep Schlumberger sounding to investigate the electrical structure of the crust and upper mantle in South Africa, Geophysics, 1969, 34: 450–162.

    Article  Google Scholar 

  2. Jones, A. G., Gough, D. I., Kurtz, R. D. et al., Electromagnetic images of regional structure in the southern Canadian Cordillera, Geophys. Res. Lett., 1992, 12: 2373–2376.

    Article  Google Scholar 

  3. Sato, H., Ida, Y., Low frequency electrical impedance of partially molten gabbro: The effect of melt geometry on electrical properties, Tectonophys., 1984, 107: 105–134.

    Article  Google Scholar 

  4. Sato, H., High temperature a.c. electrical properties of olivine single crystal with varying oxygen partial pressure: Implications for the point defect chemistry, Phys. Earth Planet. Inter., 1986, 41: 269–282.

    Article  Google Scholar 

  5. Roberts, J. J., Tyburczy, J. A., Partial-melt electrical conductivity: Influence of melt composition, J. Geopys. Res., 1999, 104: (B4): 7055–7065.

    Google Scholar 

  6. Matsushima, S., Partial melting of rocks observed by the sound velocity method and the possibility of a quasi-dry low velocity zone in the upper mantle, Phys. Earth Planet. Inter., 1989, 55: 306–312.

    Article  Google Scholar 

  7. Lebedev, E. B., Kern, H., The effect of hydration reactions on wave velocities in basalts, Tectonophys., 1999, 308: 331–340.

    Article  Google Scholar 

  8. Liu Yonggang, Xie Hongsen, Guo Jie et al., A new method for experimental determination of compressional velocities in rocks and minerals at high pressure, Chin. Phys. Lett., 2000, 17(12): 924–926.

    Article  Google Scholar 

  9. Song Maoshuang, Xie Hongsen, Zheng Haifei et al., Determination of serpentine dehydration temperature at 1–5 GPa by the method of electrical conductivity, Chinese Science Bulletin, 1996, 41(21): 1815–1819.

    Google Scholar 

  10. Deng Jinfu, Phase Equilibrium of Rock and Generation of Rock (in Chinese), Wuhan: Geological Institution of Wuhan Press, 1986, 1–37.

    Google Scholar 

  11. Huebner, S. J., Dillenaurg, G. D., Impedance spectra of dry silicate minerals and rock: Qualitative interpretation of spectra, Am. Miner., 1995, 80: 46–64.

    Google Scholar 

  12. Wanamaker, B. J., Duba, A. G., Electrical conductivity of San Carlos olivine along [100] under oxygen- and pyroxenebuffer conditions and implications for defect equilibria, J. Geophys. Res., 1993, 98(B1): 489–500.

    Article  Google Scholar 

  13. Roberts, J. J., Tyburczy, J. A., Frequency dependent electrical properties of polycrystalline olivine compacts, J. Geophys. Res., 1991, 96(B10): 16205–16222.

    Article  Google Scholar 

  14. MacDonald, J. R., Johnson, W. B., Impedance Spectroscopy—Emphasizing Solid Material System, New York: Wiley & Sons, 1987, 1–26.

    Google Scholar 

  15. MacDonald, J. R., Generalizations of “universal dielectric response” and a general distribution-of-activation-energies model for dielectric and conducting systems, J. Appl. Phys., 1985, 58: 1971–1978.

    Article  Google Scholar 

  16. Xu, Y-S, Poe, B., Shankland, T. J. et al., Electrical conductivity of olivine, wadsleyite, and ringwoodite under uppermantle conditions, Science, 1998, 280: 1415–1418.

    Google Scholar 

  17. Schock, R. N., Duba, A. G., Heard, H. C. et al., The electrical conductivity of polycrystalline olivine and pyroxene under pressure, in High-Pressure Research: Applications in Geophysics (eds. Manghnani, M. H., Akimoto, S. I.), New York, San Francisco, London: Academic Press, 1977, 39–51.

    Google Scholar 

  18. Watanabe, T., Kurita, K., The relationship between electrical conductivity and melt fraction in a partially molten system: Arche’s law behavior, Phys. Earth Planet. Inter., 1993, 78: 9–17.

    Article  Google Scholar 

  19. Hirsch, L. M., Shankland, T. J., Quantitative olivine-defect chemical model: Insights on electrical conduction, diffusion, andthe role of Fe content, Geophys. J. Int., 1993, 114: 21–35.

    Article  Google Scholar 

  20. Dobson, D. P., Brodholt, J. P., The electrical conductivity of the lower mantle phase magnesiowustite at high temperatures and pressures, J. Geophys. Res., 2000, 105(Bl): 531–538.

    Article  Google Scholar 

  21. Christensen, N. I., Compressional wave velocities in possible mantle rocks to pressures of 30 kilobars, J. Geophys. Res., 1974, 79(2): 4407–1412.

    Article  Google Scholar 

  22. Li, X.-Y., Ming, L. C., Manghnani, M.-H., Pressure dependence of the electrical conductivity of (Mg9sFe0.1)SiO3 perovskite, J. Geophys. Res., 1993, 98(B1): 501–508.

    Article  Google Scholar 

  23. Huebner, S. J., Voigt, D. E., Electrical conductivity of diopside: Evidence for oxygen vacancies, Am. Miner., 1988, 73: 1235–1254.

    Google Scholar 

  24. Richet, P., Ingrin, J., Mysen, B. O., Premelting effects in minerals: An experimental study, Earth Planet. Sci. Lett., 1994, 121(4): 337–345.

    Article  Google Scholar 

  25. Roberts, J. J., Tyburczy, J. A., Impedance spectroscopy of single and polycrystalline olivine: Evidence for grain boundary transport, Phys. Chem. Minerals, 1993, 20: 19–26.

    Article  Google Scholar 

  26. Chiou, B. S., Lin, S. T., Duh, J. G. et al., Equivalent circuit model in grain-boundary barrier layer capacitors, J. Am. Ceram. Soc., 1989, 72:1967–1975.

    Article  Google Scholar 

  27. Drury, M. R., Fitz Gerald, J. D., Mantle rheology: Insights from laboratory studies of deformation and phase transition, in The Earth’s Mantle: Composition, Structure and Evolution (ed. Jackson, I.), Cambridge: Cambridge University Press, 1998, 503–558.

    Google Scholar 

  28. Grover, C. R. M., Grain boundaries in semiconductors, J. Phys. C., 1985, 18: 4079–4119.

    Article  Google Scholar 

  29. Christensen, N. I., Mooney, W. D., Seismic velocity structure and composition of the continental crust: A global view, J. Geophys. Res., 1995, 100(B7): 9761–9788.

    Article  Google Scholar 

  30. Rudnick, R. L., Making continental crust, Nature, 1995, 378: 571–578.

    Article  Google Scholar 

  31. Marquis, G., Hyndman, R. D., Geophysical support for aqueous fluids in the deep crust: Seismic and electrical relationships, Geophys. J. Int., 1992, 110: 91–105.

    Article  Google Scholar 

  32. Lastovickova, M., A review of laboratory measurements of the electrical conductivity of rocks and minerals, Phys. Earth. Planet. Inter., 1991, 66: 1–11.

    Article  Google Scholar 

  33. Filloux, J. H., Magnetelluric experiment over the Rose area, J. Geophys. Res., 1982, 87: 8363–8378.

    Article  Google Scholar 

  34. Gough, D. I., Seismic reflectors, conductivity, water and stress in the continental crust, Nature, 1986, 323: 143–144.

    Article  Google Scholar 

  35. Li Qinghe, Zhang Yuansheng, Tu Yiminet al., The combined interpretation of crustal velocity and electrical resistivity in Qilianshan Moutain-Hexi Corridor region, Chinese J. Geophys, 1998, 41: 215–227.

    Google Scholar 

  36. Hyndman, R. D., Shearer, P. M., Water in the lower continental crust: Modelling magnetotelluric and seismic reflection results, Geophys. J. Int., 1989, 98: 343–365.

    Article  Google Scholar 

  37. Mitchell, B. J., Landisman, M., Electrical and seismic properties of the earth’s crust in the southwestern great plains of the USA, Geophys., 1971, 36: 363–381.

    Article  Google Scholar 

  38. Hyndman, R. D., Klemperer, S. L., Lower-crustal porosity from electrical measurements and inferences about composition from seismic velocities, Geophys. Res. Lestt, 1989, 16: 255–258.

    Article  Google Scholar 

  39. Schmeling, H., Numerical model on the influence of partial melt on elastic, anelastic and electrical properties of rocks (Part II)—Electrical conductivity, Phys. Earth Planet. Inter., 1986, 43: 123–136.

    Article  Google Scholar 

  40. Waff, H, S., Theoretical considerations of electrical conductivity in a partially molten mantle and implications for geothermometry, J. Geophys. Res., 1974, 79(26): 4003–010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, L., Du, J., Liu, W. et al. Experimental studies of electrical conductivities and P-wave velocities of gabbro at high pressures and high temperatures. Sci. China Ser. D-Earth Sci. 46, 895–908 (2003). https://doi.org/10.1360/01yd0441

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/01yd0441

Keywords

Navigation