Science in China Series D: Earth Sciences

, Volume 46, Issue 9, pp 895–908 | Cite as

Experimental studies of electrical conductivities and P-wave velocities of gabbro at high pressures and high temperatures



The P-wave velocities and electrical conductivities of gabbro were measured using ultrasonic transmission method and impedance spectroscopy from room temperature to 1100°C at 1–2 GPa, and the factors controlling the P-wave velocity and the microscopic conductance mechanisms of the rock were analyzed. The experimental results show that the P-wave velocities of gabbro drop abruptly at temperatures of 800-850°C and under pressures of 1–2 GPa due to the occurrence of grain boundary phases and dehydration melting; however, the electrical conductivities and electronic conduction mechanisms have not changed obviously at temperatures of 800–850°C. At temperatures Below 680°C, only one impedance arc (I) corresponding to grain interior conduction occurs at frequencies between 12 Hz and 105 Hz, the second arc (II) corresponding to grain boundary conduction occurs at temperatures above 680°C. The total conductivity of this rock is dominated by the grain interior conductivity as the occurrence of grain boundary conduction has a small effect on the total conductivity. The laboratory-measured velocities are consistent with the average P-wave velocity observations of lower crust and upper mantle. The conductivity values correspond well with the gabbroite composition of the lower crust and upper mantle; however, they are about 1-2 orders of magnitude lower than MT data from the high conductive layers. The experiments confirm that the dehydration of hydrous minerals can induce the partial melting, and the low seismic velocity zones might be correlated with the high conductive layers if partial melting occurs.


gabbro high temperature and high pressure electrical conductivity P-wave velocity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zijl, J., A deep Schlumberger sounding to investigate the electrical structure of the crust and upper mantle in South Africa, Geophysics, 1969, 34: 450–162.CrossRefGoogle Scholar
  2. 2.
    Jones, A. G., Gough, D. I., Kurtz, R. D. et al., Electromagnetic images of regional structure in the southern Canadian Cordillera, Geophys. Res. Lett., 1992, 12: 2373–2376.CrossRefGoogle Scholar
  3. 3.
    Sato, H., Ida, Y., Low frequency electrical impedance of partially molten gabbro: The effect of melt geometry on electrical properties, Tectonophys., 1984, 107: 105–134.CrossRefGoogle Scholar
  4. 4.
    Sato, H., High temperature a.c. electrical properties of olivine single crystal with varying oxygen partial pressure: Implications for the point defect chemistry, Phys. Earth Planet. Inter., 1986, 41: 269–282.CrossRefGoogle Scholar
  5. 5.
    Roberts, J. J., Tyburczy, J. A., Partial-melt electrical conductivity: Influence of melt composition, J. Geopys. Res., 1999, 104: (B4): 7055–7065.Google Scholar
  6. 6.
    Matsushima, S., Partial melting of rocks observed by the sound velocity method and the possibility of a quasi-dry low velocity zone in the upper mantle, Phys. Earth Planet. Inter., 1989, 55: 306–312.CrossRefGoogle Scholar
  7. 7.
    Lebedev, E. B., Kern, H., The effect of hydration reactions on wave velocities in basalts, Tectonophys., 1999, 308: 331–340.CrossRefGoogle Scholar
  8. 8.
    Liu Yonggang, Xie Hongsen, Guo Jie et al., A new method for experimental determination of compressional velocities in rocks and minerals at high pressure, Chin. Phys. Lett., 2000, 17(12): 924–926.CrossRefGoogle Scholar
  9. 9.
    Song Maoshuang, Xie Hongsen, Zheng Haifei et al., Determination of serpentine dehydration temperature at 1–5 GPa by the method of electrical conductivity, Chinese Science Bulletin, 1996, 41(21): 1815–1819.Google Scholar
  10. 10.
    Deng Jinfu, Phase Equilibrium of Rock and Generation of Rock (in Chinese), Wuhan: Geological Institution of Wuhan Press, 1986, 1–37.Google Scholar
  11. 11.
    Huebner, S. J., Dillenaurg, G. D., Impedance spectra of dry silicate minerals and rock: Qualitative interpretation of spectra, Am. Miner., 1995, 80: 46–64.Google Scholar
  12. 12.
    Wanamaker, B. J., Duba, A. G., Electrical conductivity of San Carlos olivine along [100] under oxygen- and pyroxenebuffer conditions and implications for defect equilibria, J. Geophys. Res., 1993, 98(B1): 489–500.CrossRefGoogle Scholar
  13. 13.
    Roberts, J. J., Tyburczy, J. A., Frequency dependent electrical properties of polycrystalline olivine compacts, J. Geophys. Res., 1991, 96(B10): 16205–16222.CrossRefGoogle Scholar
  14. 14.
    MacDonald, J. R., Johnson, W. B., Impedance Spectroscopy—Emphasizing Solid Material System, New York: Wiley & Sons, 1987, 1–26.Google Scholar
  15. 15.
    MacDonald, J. R., Generalizations of “universal dielectric response” and a general distribution-of-activation-energies model for dielectric and conducting systems, J. Appl. Phys., 1985, 58: 1971–1978.CrossRefGoogle Scholar
  16. 16.
    Xu, Y-S, Poe, B., Shankland, T. J. et al., Electrical conductivity of olivine, wadsleyite, and ringwoodite under uppermantle conditions, Science, 1998, 280: 1415–1418.Google Scholar
  17. 17.
    Schock, R. N., Duba, A. G., Heard, H. C. et al., The electrical conductivity of polycrystalline olivine and pyroxene under pressure, in High-Pressure Research: Applications in Geophysics (eds. Manghnani, M. H., Akimoto, S. I.), New York, San Francisco, London: Academic Press, 1977, 39–51.Google Scholar
  18. 18.
    Watanabe, T., Kurita, K., The relationship between electrical conductivity and melt fraction in a partially molten system: Arche’s law behavior, Phys. Earth Planet. Inter., 1993, 78: 9–17.CrossRefGoogle Scholar
  19. 19.
    Hirsch, L. M., Shankland, T. J., Quantitative olivine-defect chemical model: Insights on electrical conduction, diffusion, andthe role of Fe content, Geophys. J. Int., 1993, 114: 21–35.CrossRefGoogle Scholar
  20. 20.
    Dobson, D. P., Brodholt, J. P., The electrical conductivity of the lower mantle phase magnesiowustite at high temperatures and pressures, J. Geophys. Res., 2000, 105(Bl): 531–538.CrossRefGoogle Scholar
  21. 21.
    Christensen, N. I., Compressional wave velocities in possible mantle rocks to pressures of 30 kilobars, J. Geophys. Res., 1974, 79(2): 4407–1412.CrossRefGoogle Scholar
  22. 22.
    Li, X.-Y., Ming, L. C., Manghnani, M.-H., Pressure dependence of the electrical conductivity of (Mg9sFe0.1)SiO3 perovskite, J. Geophys. Res., 1993, 98(B1): 501–508.CrossRefGoogle Scholar
  23. 23.
    Huebner, S. J., Voigt, D. E., Electrical conductivity of diopside: Evidence for oxygen vacancies, Am. Miner., 1988, 73: 1235–1254.Google Scholar
  24. 24.
    Richet, P., Ingrin, J., Mysen, B. O., Premelting effects in minerals: An experimental study, Earth Planet. Sci. Lett., 1994, 121(4): 337–345.CrossRefGoogle Scholar
  25. 25.
    Roberts, J. J., Tyburczy, J. A., Impedance spectroscopy of single and polycrystalline olivine: Evidence for grain boundary transport, Phys. Chem. Minerals, 1993, 20: 19–26.CrossRefGoogle Scholar
  26. 26.
    Chiou, B. S., Lin, S. T., Duh, J. G. et al., Equivalent circuit model in grain-boundary barrier layer capacitors, J. Am. Ceram. Soc., 1989, 72:1967–1975.CrossRefGoogle Scholar
  27. 27.
    Drury, M. R., Fitz Gerald, J. D., Mantle rheology: Insights from laboratory studies of deformation and phase transition, in The Earth’s Mantle: Composition, Structure and Evolution (ed. Jackson, I.), Cambridge: Cambridge University Press, 1998, 503–558.Google Scholar
  28. 28.
    Grover, C. R. M., Grain boundaries in semiconductors, J. Phys. C., 1985, 18: 4079–4119.CrossRefGoogle Scholar
  29. 29.
    Christensen, N. I., Mooney, W. D., Seismic velocity structure and composition of the continental crust: A global view, J. Geophys. Res., 1995, 100(B7): 9761–9788.CrossRefGoogle Scholar
  30. 30.
    Rudnick, R. L., Making continental crust, Nature, 1995, 378: 571–578.CrossRefGoogle Scholar
  31. 31.
    Marquis, G., Hyndman, R. D., Geophysical support for aqueous fluids in the deep crust: Seismic and electrical relationships, Geophys. J. Int., 1992, 110: 91–105.CrossRefGoogle Scholar
  32. 32.
    Lastovickova, M., A review of laboratory measurements of the electrical conductivity of rocks and minerals, Phys. Earth. Planet. Inter., 1991, 66: 1–11.CrossRefGoogle Scholar
  33. 33.
    Filloux, J. H., Magnetelluric experiment over the Rose area, J. Geophys. Res., 1982, 87: 8363–8378.CrossRefGoogle Scholar
  34. 34.
    Gough, D. I., Seismic reflectors, conductivity, water and stress in the continental crust, Nature, 1986, 323: 143–144.CrossRefGoogle Scholar
  35. 35.
    Li Qinghe, Zhang Yuansheng, Tu Yiminet al., The combined interpretation of crustal velocity and electrical resistivity in Qilianshan Moutain-Hexi Corridor region, Chinese J. Geophys, 1998, 41: 215–227.Google Scholar
  36. 36.
    Hyndman, R. D., Shearer, P. M., Water in the lower continental crust: Modelling magnetotelluric and seismic reflection results, Geophys. J. Int., 1989, 98: 343–365.CrossRefGoogle Scholar
  37. 37.
    Mitchell, B. J., Landisman, M., Electrical and seismic properties of the earth’s crust in the southwestern great plains of the USA, Geophys., 1971, 36: 363–381.CrossRefGoogle Scholar
  38. 38.
    Hyndman, R. D., Klemperer, S. L., Lower-crustal porosity from electrical measurements and inferences about composition from seismic velocities, Geophys. Res. Lestt, 1989, 16: 255–258.CrossRefGoogle Scholar
  39. 39.
    Schmeling, H., Numerical model on the influence of partial melt on elastic, anelastic and electrical properties of rocks (Part II)—Electrical conductivity, Phys. Earth Planet. Inter., 1986, 43: 123–136.CrossRefGoogle Scholar
  40. 40.
    Waff, H, S., Theoretical considerations of electrical conductivity in a partially molten mantle and implications for geothermometry, J. Geophys. Res., 1974, 79(26): 4003–010.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  1. 1.Center for Analysis and PredictionChina Seismological BureauBeijingChina
  2. 2.Institute of GeochemistryChinese Academy of SciencesGuiyangChina

Personalised recommendations