Advertisement

Clays and Clay Minerals

, Volume 58, Issue 5, pp 707–716 | Cite as

Quantification of Allophane from Ecuador

  • Stephan KaufholdEmail author
  • Kristian Ufer
  • Annette Kaufhold
  • Joseph W. Stucki
  • Alexandre S. Anastácio
  • Reinhold Jahn
  • Reiner Dohrmann
Article

Abstract

Allophane is a very fine-grained clay mineral which is especially common in Andosols. Its importance in soils derives from its large reactive surface area. Owing to its short-range order, allophane cannot be quantified by powder X-ray diffraction (XRD) directly. It is commonly dissolved from the soil by applying extraction methods. In the present study the standard extraction method (oxalate) was judged to be unsuitable for the quantification of allophane in a soil/clay deposit from Ecuador, probably because of the large allophane content (>60 wt.%). This standard extraction method systematically underestimated the allophane content but the weakness was less pronounced in samples with small allophane contents. In the case of allophane-rich materials, the Rietveld XRD technique, using an internal standard to determine the sum of X-ray amorphous phases, is recommended if appropriate structural models are available for the other phases present in the sample. The allophane (+imogolite) content is measured by subtracting the amount of oxalate-soluble phases (e.g. ferrihydrite). No correction would be required if oxalate-soluble Fe were incorporated in the allophane structure. The present study, however, provides no evidence for this hypothesis. Mössbauer and scanning electron microscopy investigations indicate that goethite and poorly ordered hematite are the dominant Fe minerals and occur as very fine grains (or coatings) being dispersed in the cloud-like allophane aggregates.

Allophane is known to adsorb appreciable amounts of water, depending on ambient conditions. The mass fraction of the sample attributed to this mineral thus changes accordingly; the choice of a reference hydration state is, therefore, a fundamental factor in the quantification of allophane in a sample. Results from the present study revealed that (1) drying at 105ºC produced a suitable reference state, and (2) water adsorption has no effect on quantification by XRD analysis.

Key Words

Allophane Chemical Extraction Methods Differential Thermal Analysis Ecuador Mössbauer Spectroscopy Quantification X-ray Diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergmann, J., Friedel, P., and Kleeberg, R. (1998) BGMN-a new fundamental parameters based Rietveld program for laboratory X-ray sources, its use in quantitative analysis and structure investigations. Commission of Powder Diffraction. International Union of Crystallography, CPD Newsletter, 20, 5–8.Google Scholar
  2. Blakemore, L.C., Searle, P.L., and Daly, B.K (1981) Methods for Chemical Analysis of Soils. Scientific Report 10A, New Zealand Soil Bureau, Department of Scientific and Industrial Research, Lower Hutt, New Zealand.Google Scholar
  3. Blakemore, L.C., Searle, P.L., and Daly, B.K. (1987) Methods for Chemical Analysis of Soils. Scientific report No. 80. New Zealand Soil Bureau, Department of Scientific and Industrial Research, Lower Hutt, New Zealand.Google Scholar
  4. Buurman, P., Nakken, N., Meijer, E.L., and García-Rodeja, E. (2001) Repeated oxalate extraction of European allophanic soils. P. 63 in: Volcanic Soils: Properties, Processes and Land Use. PortaGoogle Scholar
  5. Delgada, S. Miguel, Azores, Portugal, Cheary, R.W. and Coelho, A.A. (1992) A fundamental parameters approach to X-ray line-profile fitting. Journal of Applied Crystallography, 25, 109–121.CrossRefGoogle Scholar
  6. Dahlgren, R.A. (1994) Quantification of allophane and imogolite. Pp. 431–451 in: Quantitative Methods in Soil Mineralogy (R.J. Luxmoore, editor). Soil Science Society of America, Madison, Wisconsin, USA.Google Scholar
  7. Dohrmann, R., Meyer, I., Kaufhold, S., Jahn, R., Kleber, M., and Kasbohm, J. (2002) Rietveld based-quantification of allophane. Mainzer Naturwisseschaftliches Archiv, 40, 28–30.Google Scholar
  8. Harsh, J. (2000) Poorly crystalline aluminosilicate clays. Pp. F169–F182 in: Handbook of Soil Science (M.E. Sumner, editor). CRC Press, Boca Raton, Florida, USA.Google Scholar
  9. Kaufhold, S. (2007) Ecuadorian Allophane. Industrial Minerals, May 2007, p. 95.Google Scholar
  10. Kaufhold, S., Kaufhold, A., Jahn, R., Brito, S., Dohrmann, R., Hoffmann, R., Gliemann, H., Weidler, P., and Frechen, M. (2009) A new massive deposit of allophane raw material in Ecuador. Clays and Cay Minerals, 57, 72–81.CrossRefGoogle Scholar
  11. Parfitt, R.L. (1990) Allophane in New Zealand-a review. Australian Journal of Soil Research, 28, 343–360.CrossRefGoogle Scholar
  12. Parfitt, R.L. (2009) Allophane and imogolite: role in soil biogeochemical processes. Clay Minerals, 44, 135–155.CrossRefGoogle Scholar
  13. Parfitt, R.L. and Wilson, A.D. (1985) Estimation of allophane and halloysite in three sequences of volcanic soils, New Zealand. Pp. 1–8 in: Volcanic Soils, Vol. 7 (E. Fernandes and D.H. Yaalon, editors). Catena Verlag, Reiskirchen, Germany.Google Scholar
  14. Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung Düngung und Bodenkunde, 105, 194–202.CrossRefGoogle Scholar
  15. Ufer, K., Roth, G., Kleeberg, R., Stanjek, H., Dohrmann, R., and Bergmann, J. (2004) Description of X-ray powder pattern of turbostratically disordered layer structures with a Rietveld compatible approach. Zeitschrift für Kristallographie, 219, 519–527.Google Scholar
  16. Ufer, K., Stanjek, H., Roth, G., Dohrmann, R., Kleeberg, R., and Kaufhold, S. (2008) Quantitative phase analysis of bentonites by the Rietveld method. Clays and Clay Minerals, 56, 272–282.CrossRefGoogle Scholar
  17. Walenta, G. and Füllmann, T. (2004) Advances in quantitative XRD analysis for clinker, cements, and cementitious additions. Powder Diffraction, 19, 40–44.CrossRefGoogle Scholar

Copyright information

© Clay Minerals Society 2010

Authors and Affiliations

  • Stephan Kaufhold
    • 1
    Email author
  • Kristian Ufer
    • 2
  • Annette Kaufhold
    • 3
  • Joseph W. Stucki
    • 4
  • Alexandre S. Anastácio
    • 4
  • Reinhold Jahn
    • 3
  • Reiner Dohrmann
    • 1
    • 5
  1. 1.BGR, Bundesanstalt für Geowissenschaften und RohstoffeHannoverGermany
  2. 2.TU Bergakademie FreibergInstitute of MineralogyFreibergGermany
  3. 3.Martin-Luther-University Halle-WittenbergInstitute for Soil Sciences and Plant NutritionHalleGermany
  4. 4.Department of Natural Resources and Environmental SciencesUniversity of IllinoisUrbanaUSA
  5. 5.LBEG, Landesamt für Bergbau, Energie und GeologieHannoverGermany

Personalised recommendations