Advertisement

Clays and Clay Minerals

, Volume 58, Issue 5, pp 691–706 | Cite as

Seasonal Variation in the Mineralogy of the Suspended Particulate Matter of the Lower Changjiang River at Nanjing, China

  • Changping MaoEmail author
  • Jun Chen
  • Xuyin Yuan
  • Zhongfang Yang
  • William Balsam
  • Junfeng Ji
Article

Abstract

The source and temporal changesof mineralstransported by the world’slarge riversare important. In particular, clay minerals are important in evaluating the maturity of suspended sediments, weathering intensity, and source area. To examine seasonal changes in mineralogical compositions of the Changjiang River (CR), suspended particulate matter (SPM) samples were collected monthly for two hydrological cycles in Nanjing city and then were studied using X-ray diffraction (XRD), diffuse reflectance spectrophotometry (DRS), X-ray fluorescence spectrometry (XRF), and chemical analyses. The resultsindicate that the concentration of CR SPM rangesfrom 11.3 to 152 mg/L and ishighly correlated to the rate of water discharge, with a greater concentration in flood season and lower concentrations during the dry season. CaO, MgO, and Na2O increase with increasing discharge whereas Al2O3 decreases sharply with increasing discharge. Dolomite, calcite, and plagioclase show strikingly similar seasonal variations and increase with increasing discharge with maximum concentrations in the flood season. In contrast, the clay mineral content exhibits the opposite trend with the lowest concentrationsin the flood season. Illite dominatesthe clay mineralsof the CR SPM, followed by chlorite, kaolinite, and smectite. Illite and kaolinite show distinctly seasonal variations; SPM contains more illite and less kaolinite during the flood season than during the dry season. The illite chemistry index and crystallinity, as well as kaolinite/illite ratio, all indicate intense physical erosion in the CR basin during the rainy season. Total iron (FeT) and highly reactive iron (FeHR) concentrations display slight seasonal changes with the smallest values observed during the flood season. Goethite is the dominant Fe oxide mineral phase in the CR SPM and hematite is a minor component, as revealed by DRS analyses. The FeT flux and FeHR flux are 2.786×106 T/y and 1.196×106 T/y, respectively.

Key Words

Changjiang River Erosion Mineralogy Seasonality Suspended Particulate Matter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balsam, W.L. and Beeson, J.P. (2003) Sea-floor sediment distribution in the Gulf of Mexico. Deep-Sea Research Part I, 50, 1421–1444.CrossRefGoogle Scholar
  2. Barranco, F.T., Balsam, W.L., and Deaton, B.C. (1989) Quantitative reassessment of brick red lutites: Evidence from reflectance spectrophotometry. Marine Geology, 89, 299–314.CrossRefGoogle Scholar
  3. Berner, R.A. (1970) Sedimentary Pyrite Formation. American Journal of Science, 268, 1–23.CrossRefGoogle Scholar
  4. Berner, E.K. and Berner, R.A. (1996) Global Environment: Water, Air, and Geochemical Cycles. Prentice Hall, Englewood Clifts, New Jersey, USA, 376 pp.Google Scholar
  5. Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803–832.CrossRefGoogle Scholar
  6. Borch, T., Masue, Y., Kukkadapu, R.K., and Fendorf, S. (2007) Phosphate imposed limitations on biological reduction and alteration of ferrihydrite. Environmental Science Technology, 41, 166–172.CrossRefGoogle Scholar
  7. Boski, T., Pessoa, J., Pedro, P., Thorez, J., Dias, J.M.A., and Hall, I.R. (1998) Factorsgoverning abundance of hydro-lysable amino acids in the sediments from the NW European Continental margin (47–50ºN). Progress in Oceanography, 42, 145–164.CrossRefGoogle Scholar
  8. Chamley, H. (1989) Clay Sedimentology. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  9. Chen, J.S., Wang, F.Y., Xia, X.H., and Zhang, L.T. (2002) Major element chemistry of the Changjiang (Yangtze River). Chemical Geology, 187, 231–255.CrossRefGoogle Scholar
  10. Chen, X.Q., Yan, Y.X., Fu, R.S., Dou, X.P., and Zhang, E.F. (2008) Sediment transport from the Yangtze River, China, into the sea over the Post-Three Gorge Dam Period: A discussion. Quaternary International, 186, 55–64.CrossRefGoogle Scholar
  11. Chen, Z.Y., Li, J.F., Shen, H.T., and Wang, Z.H. (2001) Yangtze River of China: Historical analysis of discharge variability and sediment flux. Geomorphology, 41, 77–91.CrossRefGoogle Scholar
  12. Chetelat, B., Liu, C., Zhao, Z., Wang, Q., Li, S., Li, J., and Wang, B. (2008) Geochemistry of the dissolved load of the Changjiang Basin rivers: anthropogenic impacts and chemical weathering. Geochimica et Cosmochimica Acta, 72, 4254–4277.CrossRefGoogle Scholar
  13. Cook, H.E., Johnson, P.D., Matti, J.C., and Zemmels, I. (1975) Methodsof sample preparation and x-ray diffraction analysis in x-ray mineralogy laboratory. Pp. 997–1007 in: Initial Reports of the DSDP (A.G. Kaneps et al., editors). Printing Office, Washington, D.C.Google Scholar
  14. Cornell, R.M. and Schwertmann, U. (2003) The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. VHC, New York.CrossRefGoogle Scholar
  15. Deaton, B.C. and Balsam, W.L. (1991) Visible spectroscopy-a rapid method for determining hematite and goethite concentration in geological materials. Journal of Sedimentary Petrology, 61, 628–632.CrossRefGoogle Scholar
  16. Dekov, V.M., Komy, Z., Araujo, F., Van Put, A., and VanGrieken, R. (1997) Chemical composition of sediments, suspended matter, river water and ground water of the Nile (Aswan-Sohag traverse). Science of the Total Environment, 201, 195–210.CrossRefGoogle Scholar
  17. Ding, T., Wan, D., Wang, C., and Zhang, F. (2004) Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China. Geochimica et Cosmochimica Acta, 68, 205–216.CrossRefGoogle Scholar
  18. Duan, S.W., Liang, T., Zhang, S., Wang, L.J., Zhang, X.M., and Chen, X.B. (2008) Seasonal changes in nitrogen and phosphorus transport in the lower Changjiang River before the construction of the Three Gorges Dam. Estuarine Coastal and Shelf Science, 79, 239–250.CrossRefGoogle Scholar
  19. Dupré, B., Gaillardet, J., Rousseau, D., and Allegre, C.J. (1996) Major and trace elementsof river-borne material: the Congo basin. Geochimica et Cosmochimica Acta, 60, 1301–1321.CrossRefGoogle Scholar
  20. Eberl, D.D. (2004) Quantitative mineralogy of the Yukon River system: Changes with reach and season, and determining sediment provenance. American Mineralogist, 89, 1784–1794.CrossRefGoogle Scholar
  21. Esquevin, J. (1969) Influence de la composition chimique des illites sur le cristallinité. Bulletin Centre Recherch Pau, S.N.P.A, 3, 147–154.Google Scholar
  22. Fung, I.Y., Meyn, S.K., Tegen, I., Doney, S.C., John, J.G., and Bishop, J.K.B. (2000) Iron supply and demand in the upper ocean. Global Biogeochemical Cycles, 14, 281–296.CrossRefGoogle Scholar
  23. Gaillardet, J., Dupre, B., and Allegre, C. J. (1999a) Geochemistry of large river suspended sediments: Silicate weathering or recycling tracer? Geochimica et Cosmochimica Acta, 63, 4037–4051.CrossRefGoogle Scholar
  24. Gaillardet, J., Dupré, B., Louvat, P., and Allègre, C.J. (1999b) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159, 3–30.CrossRefGoogle Scholar
  25. Galy, A. and France-Lanord, C. (2001) Higher erosion rates in the Himalaya: Geochemical constraints on riverine fluxes. Geology, 29, 23–26.CrossRefGoogle Scholar
  26. Gao, S. and Wang, Y.P. (2008) Changesin material fluxes from the Changjiang River and their implicationson the adjoining continental shelf ecosystem. Continental Shelf Research, 28, 1490–1500.CrossRefGoogle Scholar
  27. Gimsing, A.L. and Borggaard, O.K. (2007) Phosphate and glyphosate adsorption by hematite and ferrihydrite and comparison with other variable-charge minerals. Clays and Clay Minerals, 55, 108–114.CrossRefGoogle Scholar
  28. Gingele, F.X., De Deckker, P., and Hillenbrand, C.D. (2001) Clay mineral distribution in surface sediments between Indonesia and NW Australia-source and transport by ocean currents. Marine Geology, 179, 135–146.CrossRefGoogle Scholar
  29. Gislason, S.R., Oelkers, E.H., and Snorrason, A. (2006) Role of river-suspended material in the global carbon cycle. Geology, 34, 49–52.CrossRefGoogle Scholar
  30. Guyot, J.L., Jouanneau, J.M., Soares, L., Boaventura, G.R., Maillet, N., and Lagane, C. (2007) Clay mineral composition of river sediments in the Amazon Basin. Catena, 71, 340–356.CrossRefGoogle Scholar
  31. Haese, R.R. (2006) The biogeochemistry of iron. Pp. 241–270 in: Marine Geochemistry (H.D. Schulz and M. Zabel, editors). 2nd edition. Springer-Verlag Heidelberg, New York.CrossRefGoogle Scholar
  32. Hu, M.H., Stallard, R.F., and Edmond, J.M. (1982) Major ion chemistry of some large Chinese rivers. Nature, 298, 550–553.CrossRefGoogle Scholar
  33. Irion, G. (1991) Mineralsin rivers. Pp. 265–281 in: Biogeochemistry of Major World Rivers (E.T. Degens, S. Kempe, and J.F. Richey, editors). SCOPE, 42. Wiley, New York.Google Scholar
  34. Jha, P.K., Vaithiyanathan, P., and Subramanian, V. (1993) Mineralogical characteristics of the sediments of a Himalayan river: Yamuna river-a tributary of the Ganges. Environmental Geology, 22, 13–20.CrossRefGoogle Scholar
  35. Ji, J.F., Chen, J., and Lu, H.Y. (1999) Origin of illite in the loessfrom the Luochuan area, LoessPlateau, Central China. Clay Minerals, 34, 525–532.CrossRefGoogle Scholar
  36. Ji, J.F., Balsam, W., Chen, J., and Liu, L.W. (2002) Rapid and quantitative measurement of hematite and goethite in the Chinese loess-paleosol sequence by diffuse reflectance spectroscopy. Clays and Clay Minerals, 50, 208–216.CrossRefGoogle Scholar
  37. Jickells, T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N, Cao, J.J., Boyd, P.W., Duce, R.A., Hunter, K.A., Kawahata, H., Kubilay, N., LaRoche, J., Liss, P.S., Mahowald, N., Prospero, J.M., Ridgwell, A.J., Tegen, I., and Torres, R. (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308, 67–71.CrossRefGoogle Scholar
  38. Kubler, B. (1967) La cristallinité de I’ illite et leszonestout a` fait supérieuresdu métamorphisme. Pp. 105–121 in: Etages tectoniques, Colloque de Neuchâtel. A La Bacconnière, Neuchâtel, Switzerland.Google Scholar
  39. Koshikawa, M.K., Takamatsu, T., Takada, J., Zhu, M.Y., Xu, B.H., Chen, Z.Y., Murakami, S., Xu, K.Q., and Watanabe, M. (2007) Distributions of dissolved and particulate elementsin the Yangtze estuary in 1997–2002: Background data before the closure of the Three Gorges Dam. Estuarine Coastal and Shelf Science, 71, 26–36.CrossRefGoogle Scholar
  40. Li, Y.H., Teraoka, H., Young, T.S., and Chen, J.S. (1984) The elemental composition of suspended particles from the Yellow and Yangtze Rivers. Geochimica et Cosmochimica Acta, 48, 1561–1564.CrossRefGoogle Scholar
  41. Liu, J.P., Xu, K.H., Li, A.C., Milliman, J.D., Velozzi, D.M., Xiao, S.B., and Yang, Z.S. (2007) Flux and fate of Yangtze river sediment delivered to the East China Sea. Geomorphology, 85, 208–224.CrossRefGoogle Scholar
  42. Liu, Z.F., Trentesaux, A., Clemens, S.C., Colin, C., Wang, P.X., Huang, B.Q., and Boulay, S. (2003) Clay mineral assemblages in the northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years. Marine Geology, 201, 133–146.CrossRefGoogle Scholar
  43. Lu, X.X., Ashmore, P., and Wang, J.F. (2003) Seasonal water discharge and sediment load changes in the Upper Yangtze, China. Mountain Research and Development, 23, 56–64.CrossRefGoogle Scholar
  44. Martin, J.M. and Meybeck, M. (1979) Elemental mass balance of material carried by major world rivers. Marine Chemistry, 7, 173–206.CrossRefGoogle Scholar
  45. Milliman, J.D. and Meade, R.H. (1983) World-wide delivery of river sediment to the oceans. Journal of Geology, 91, 1–21.CrossRefGoogle Scholar
  46. Muller, B., Berg, M., Yao, Z.P., Zhang, X.F., Wang, D., and Pfluger, A. (2008) How polluted isthe Yangtze River? Water quality downstream from the Three Gorges Dam. Science of the Total Environment, 402, 232–247.CrossRefGoogle Scholar
  47. Paige, C.R., Snodgrass, W.J., Nicholson, R.V., Scharer, J.M., and He, Q.H. (1997) The effect of phosphate on the transformation of ferrihydrite into crystalline products in alkaline media. Water Air and Soil Pollution, 97, 397–412.Google Scholar
  48. Petschick, R., Kuhn, G., and Gingele, F. (1996) Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Marine Geology, 130, 203–229.CrossRefGoogle Scholar
  49. Poulton, S.W. and Canfield, D.E. (2005) Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chemical Geology, 214, 209–221.CrossRefGoogle Scholar
  50. Poulton, S.W. and Raiswell, R. (2002) The low temperature geochemical cycle of iron: from continental fluxesto marine sediment deposition. American Journal of Science, 302, 774–805.CrossRefGoogle Scholar
  51. Poutlon, S.W. and Raiswell, R. (2005) Chemical and physical characteristicsof iron oxidesin riverine and glacial melt-water sediments. Chemical Geology, 218, 203–221.CrossRefGoogle Scholar
  52. Raiswell, R., Canfield, D.E., and Berner, R.A. (1994) A comparison of iron extraction methods for the determination of degree of pyritization and the recognition of iron-limited pyrite formation: Chemical Geology, 111, 101–110.CrossRefGoogle Scholar
  53. Raymo, M.E. and Ruddiman, W.F. (1992) Tectonic forcing of late Cenozoic climate. Nature, 359, 117–122.CrossRefGoogle Scholar
  54. Rovira, M., Gimenez, J., Martinez, M., Martinez-Llado, X., De Pablo, J., Marti, V., and Duro, L. (2008) Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: Goethite and hematite. Journal of Hazardous Materials, 150, 279–284.CrossRefGoogle Scholar
  55. Szramek, K., McIntosh, J.C., Williams, E.L., Kanduc, T., Ogrinc, N., and Walthers, L.M. (2007) Relative weathering intensity of calcite versus dolomite in carbonate-bearing temperate zone watersheds: Carbonate geochemistry and fluxesfrom catchments within the St. Lawrence and Danube river basin. Geochemistry Geophysics Geosystems, 8, Q04002.CrossRefGoogle Scholar
  56. Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: its Composition and Evolution. Blackwell, Oxford, London.Google Scholar
  57. Thiry, M. (2000) Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth-Science Reviews, 49, 201–221.CrossRefGoogle Scholar
  58. Tipper, E.T., Bickle, M.J., Galy, A., West, A.J., Pomiés, C., and Chapman, H.J. (2006) The short term climatic sensitivity of carbonate and silicate weathering fluxes: insight from seasonal variations in river chemistry. Geochimica et Cosmochimica Acta, 70, 2737–2754.CrossRefGoogle Scholar
  59. Viers, J., Dupre, B., and Gaillardet, J. (2009) Chemical composition of suspended sediments in World Rivers: New insights from a new database. Science of the Total Environment, 407, 853–868.CrossRefGoogle Scholar
  60. Wang, Z.L., Zhang, J., and Liu, C.Q. (2007) Strontium isotopic compositions of dissolved and suspended loads from the main channel of the Yangtze River. Chemosphere, 69, 1081–1088.CrossRefGoogle Scholar
  61. Weaver, C.E. (1989) Clays, Muds and Shales. Developmentsin Sedimentology, vol. 44. Elsevier, Amsterdam, p. 819.Google Scholar
  62. Xu, K.H. and Milliman, J.D. (2009) Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three GorgesDam. Geomorphology, 104, 276–283.CrossRefGoogle Scholar
  63. Xu, K.H., Milliman, J.D., Yang, Z.S., and Wang, H.J. (2006) Yangtze sediment decline partly from Three Gorges Dam. Eos, 87, 185–190.CrossRefGoogle Scholar
  64. Xu, K.H., Milliman, J.D., Yang, Z.S., and Xu, H. (2007) Climatic and anthropogenic impactson the water and sediment discharge from the Yangtze River (Changjiang), 1950–2005. Pp. 609–626 in: Large Rivers: Geomorphology and Management (A. Gupta, editor). John Wiley & Sons, West Sussex, England.CrossRefGoogle Scholar
  65. Xu, K.H., Milliman, J.D., Li, A.C., Liu, J.P., Kao, S.J., and Wan, S.M. (2009) Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea. Continental Shelf Research, 29, 2240–2256.CrossRefGoogle Scholar
  66. Yang, S.L., Zhao, Q.Y., and Belkin, I.M. (2002) Temporal variation in the sediment load of the Yangtze river and the influencesof human activities. Journal of Hydrology, 263, 56–71.CrossRefGoogle Scholar
  67. Yang, S.Y., Jung, H.S., and Li, C.X. (2004) Two unique weathering regimesin the Changjiang and Huanghe drainage basins: geochemical evidence from river sediments. Sedimentary Geology, 164, 19–34.CrossRefGoogle Scholar
  68. Zhang, C.S., Wang, L.J., Zhang, S., and Li, X.X. (1998) Geochemistry of rare earth elements in the mainstream of the Yangtze River, China. Applied Geochemistry, 13, 451–462.CrossRefGoogle Scholar
  69. Zhang, J. (1999) Heavy metal compositions of suspended sediments in the Changjiang (Yangtze River) estuary: significance of riverine transport to the ocean. Continental Shelf Research, 19, 1521–1543.CrossRefGoogle Scholar
  70. Zhang, J., Huang, W.W., Liu, M.G., and Zhou, Q. (1990) Drainage basin weathering and major element transport of two large Chinese rivers (Huanghe and Changjiang). Journal of Geophysical Research-Oceans, 95, 13277–13288.CrossRefGoogle Scholar
  71. Zhou, W., Chen, L.X., Zhou, M., Balsam, W., and Ji, J.F. (2010) Thermal identification of goethite in soils and sediments by diffuse reflectance spectroscopy. Geoderma, 155, 419–425.CrossRefGoogle Scholar

Copyright information

© Clay Minerals Society 2010

Authors and Affiliations

  • Changping Mao
    • 1
    Email author
  • Jun Chen
    • 1
  • Xuyin Yuan
    • 2
  • Zhongfang Yang
    • 3
  • William Balsam
    • 4
  • Junfeng Ji
    • 1
  1. 1.Institute of Surficial Geochemistry, Department of Earth SciencesNanjing UniversityNanjingChina
  2. 2.College of Environmental Science and EngineeringHohai UniversityNanjingChina
  3. 3.School of Earth Science and ResourcesChina University of Geosciences (Beijing)BeijingChina
  4. 4.Department of Earth and Environmental SciencesUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations