Advertisement

Clays and Clay Minerals

, Volume 44, Issue 5, pp 693–705 | Cite as

Clay Mineral Diagenesis and Thermal History of the Thonex Well, Western Swiss Molasse Basin

  • Roland Schegg
  • Werner Leu
Article

Abstract

Results are presented of a diagenetic study from the 1300 m thick Oligocene Molasse deposits penetrated by the Thônex geothermal exploration well (Geneva, Switzerland). The x-ray diffraction (XRD) studies of fine-grained rocks indicate the following diagenetic changes: a decrease of illite/smectite (US) expandability from approximately 90% to 30% with depth, a decrease of the amount of US in the clay mineral fraction, and the appearance of corrensite at depths >750 m. The transition from random US to ordered I/S occurs at the base of the Thônex well (1200 to 1300 m) and is associated with a coal rank of about 0.7% Rr (mean random vitrinite reflectance) corresponding to paleotemperatures of 110 to 115 °C Corrensite appears at a vitrinite reflectance value of 0.6% Rr and a corresponding paleotemperature of 100 °C. The amount of post-Molasse erosion is estimated to be approximately 2 km. Thermal history modeling of the Thônex well suggests maximum paleotemperatures of 80 to 115°C and an average paleogeothermal gradient of 27 °C/km during Late Miocene maximum burial conditions.

Key Words

Chlorite/Smectite Corrensite Diagenesis Erosion estimate Illite/Smectite Paleotemperatures Thermal modeling Vitrinite reflectance XRD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen PA, Allen JR. 1990. Basin analysis: Principles and applications. Oxford: Blackwell Scientific Publication. 451 p.Google Scholar
  2. Berger J-P, Charollais J, Hugueney M. 1987. Nouvelles donnees biostratigraphiques sur la Molasse rouge du bassin genevois. Arch Sci Genève 40:77–95.Google Scholar
  3. Bodine MW, Jr, Madsen BM. 1987. Mixed-layer chlorite/smectites from a Pennsylvanian evaporite cycle, Grand County, Utah. In: Schultz LG, van Olphen H, Mumpton FA, editors. Proceeding of the International Clay Conference Denver. Boulder, CO: The Clay Minerals Society, p 85–93.Google Scholar
  4. Bodmer P, Rybach L. 1984. Geothermal map of Switzerland (heat flow density). Beitr Geol Schweiz, Ser Geophysik 22. 47 p.Google Scholar
  5. Bustin RM, Barnes MA, Barnes WC. 1985. Diagenesis 10. Quantification and modelling of organic diagenesis. Geosci Canada 12:4–21.Google Scholar
  6. Chang HK, Mackenzie FT, Schoonmaker J. 1986. Comparison between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian offshore basins. Clays Clay Miner 34:407–423.CrossRefGoogle Scholar
  7. Deming D, Chapman DS. 1989. Thermal histories and hydrocarbon generation: An example from the Utah-Wyoming thrust belt. Bull Am Assoc Petrol Geol 73:1455–1471.Google Scholar
  8. Falvey DA, Middleton MF. 1981. Passive continental margins: Evidence for prebreakup deep crustal metamorphic subsidence mechanism. In: Proceedings 26th International Geological Congress, Geology of continental margins symposium. Paris: Oceanologica Acta, p 103–114.Google Scholar
  9. Glasmann JR, Larter S, Briedis NA, Lundegard PD. 1989. Shale diagenesis in the Bergen High Area, North Sea. Clays Clay Miner 37:97–112.CrossRefGoogle Scholar
  10. Gorin G, Signer C, Amberger G. 1993. Structural configuration of the western Swiss Molasse Basin as defined by reflection seismic data. Eclogae Geol Helv 86:693–716.Google Scholar
  11. Hillier S. 1993. Origin, diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian Basin, Scotland. Clays Clay Miner 41:240–259.CrossRefGoogle Scholar
  12. Hillier S. 1995. Mafic phyllosilicates in low-grade metabasites. Characterization using deconvolution analysis—Discussion. Clay Miner 30:67–73.CrossRefGoogle Scholar
  13. Hochuli PA. 1978. Palynologische Untersuchungen im Oligozän und Untermiozän der Zentralen und Westlichen Paratethys. Beitr Paläont Oesterreich 4:1–132.Google Scholar
  14. Hoffman J, Hower J. 1979. Clay mineral assemblages as low grade metamorphic geothermometers: Application to the thrust faulted disturbed belt of Montana, USA. SEPM Spec Publ 26:55–79.Google Scholar
  15. Homewood P, Allen PA, Williams GD. 1986. Dynamics of the Molasse Basin of western Switzerland. Spec Publ Int Assoc Sediment 8:199–217.Google Scholar
  16. Inoue A, Utada M, Nagata H, Watanabe T. 1984. Conversion of trioctahedral smectite to interstratified chlorite/smectite in Pliocene acidic pyroclastic sediments of the Ohyu district, Akita prefecture, Japan. Clay Sci Soc Japan 6:103–116.Google Scholar
  17. Inoue A, Kohyama N, Kitagawa R, Watanabe T. 1987. Chemical and morphological evidence for the conversion of smectite to illite. Clays Clay Miner 35:11–120.CrossRefGoogle Scholar
  18. Inoue A, Velde B, Meunier A, Touchard G. 1988. Mechanism of illite formation during smectite-to-illite conversion in a hydrothermal system. Am Mineral 73:1325–1334.Google Scholar
  19. Inoue A, Utada M. 1991. Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, northern Honshu, Japan. Am Mineral 76: 628–640.Google Scholar
  20. Jacob H, Kuckelkorn K. 1977. Das Inkohlungsprofil der Bohrung Miesbach 1 und seine erdölgeologische Interpretation. Erdöl-Erdgas-Z 93:115–124.Google Scholar
  21. Jenny J, Burri J-P, Muralt R, Pugin A, Schegg R, Ungemach P, Vuataz F-D, Wemli R. 1995. Le forage géothermique de Thônex (Canton de Genève): aspects stratigraphiques, tectoniques, diagénétiques, géophysiques et hydrogéologiques. Eclogae Geol Helv 88:365–396.Google Scholar
  22. Kisch HJ. 1987. Correlation between indicators of very lowgrade metamorphism. In: Frey M, editor. Low temperature metamorphism. Glasgow-London: Blackie. p 227–300.Google Scholar
  23. Kübler B. 1973. La corrensite, indicateur possible de milieux de sédimentation et du degré de transformation d’un sédiment. Bull Cent Rech-Expl Elf-Aquitaine, Pau-SNPA 7: 543–556.Google Scholar
  24. Lanson B, Champion D. 1991. The I/S-to-illite reaction in the late stage of diagenesis. Am J Sci 291:473–506.CrossRefGoogle Scholar
  25. Larter S. 1989. Chemical models of vitrinite reflectance evolution. Geol Rdsch 78:349–359.CrossRefGoogle Scholar
  26. Laubscher HP. 1974. Basement uplift and decollement in the Molasse Basin. Eclogae Geol Helv 67:531–537.Google Scholar
  27. Lemcke K. 1974. Vertikalbewegungen des vormesozoischen Sockels im nördlichen Alpenvorland vom Perm bis zur Gegenwart. Eclogae Geol Helv 67:121–133.Google Scholar
  28. Matter A, Homewood P, Caron C, Van Stuijvenberg J, Weidmann M, Winkler W. 1980. Flysch and Molasse of western and central Switzerland. In: Trümpy R, editor. Geology of Switzerland: A guide book. Part B: Geological excursions. Basel-New York: Schweiz Geolog Kommission, Wepf and Co Publishers, p 261–293.Google Scholar
  29. Monnier F. 1982. Thermal diagenesis in the Swiss molasse basin: Implications for oil generation. Can J Earth Sci 19: 328–342.CrossRefGoogle Scholar
  30. Moore DM, Reynolds RC. 1989. X-ray diffraction and the identification and analysis of clay minerals. Oxford-New York: Oxford University Press. 322 p.Google Scholar
  31. Pearson MJ, Small JS. 1988. Illite-smectite diagenesis and palaeotemperatures in northern North Sea Quaternary to Mesozoic shale sequences. Clay Miner 23:109–132.CrossRefGoogle Scholar
  32. Pfiffner AO. 1986. Evolution of the north Alpine foreland basin in the Central Alps. Spec Pubis Int Assoc Sediment 8:219–228.Google Scholar
  33. Pollastro RM. 1993. Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays Clay Miner 41:119–133.CrossRefGoogle Scholar
  34. Pollastro RM, Barker CE. 1986. Application of clay-mineral, vitrinite reflectance, and fluid inclusion studies to the thermal and burial history of the Pinedale anticline, Green River Basin, Wyoming. SEPM Spec Publ 38:73–83.Google Scholar
  35. Pytte AM, Reynolds RC. 1989. The thermal transformation of smectite to illite. In: Naeser ND and McCulloh TH, editors. Thermal history of sedimentary basins: Methods and case histories. New York-Berlin-London-Paris-Tokyo: Springer-Verlag. p 133–140.CrossRefGoogle Scholar
  36. Reggiani L. 1989. Faciès lacustres et dynamique sédimentaire dans la Molasse d’eau douce inférieure Oligocène (USM) de Savoie. Eclogae Geol Helv 82:325–350.Google Scholar
  37. Renac C, Meunier A. 1995. Reconstruction of palaeogeothermal conditions in a passive margin using illite-smectite mixed-layers series (BA1 scientific drill-hole, Ardeche, France). Clay Miner 30:107–118.CrossRefGoogle Scholar
  38. Rettke RC. 1981. Probable burial diagenetic and provenance effects on Dakota Group clay mineralogy, Denver Basin. J Sed Petrol 51:541–551.Google Scholar
  39. Rey J-Ph, Kübler B. 1983. Identification des micas des séries sedimentaires par diffraction X à partir de la série harmonique (001) des preparations orientées. Schweiz mineral petrogr Mitt 63:13–36.Google Scholar
  40. Reynolds RC. 1985. NEWMOD© a computer program for the calculation of one-dimensional diffraction patterns of mixed-layer clays. RC Reynolds, 8 Brook Rd., Hanover, New Hampshire, USA.Google Scholar
  41. Reynolds RC. 1988. Mixed layer chlorite minerals. In: Bailey SW, editor. Hydrous phyllosilicates (exclusive of micas). Reviews in Miner 19:601–630.CrossRefGoogle Scholar
  42. Robert P. 1985. Histoire géothermique et diagenèse organique. Mém Centres Rech Expl-Prod Elf-Aquitaine 8:345 p.Google Scholar
  43. Rosenberg PE, Kittrick JA, Aja SU. 1990. Mixed-layer illite/smectite: A multiphase model. Am Mineral 75:1182–1185.Google Scholar
  44. Rybach L. 1984. The paleogeothermal conditions of the Swiss molasse basin: implication for hydrocarbon potential. Rev Inst franç Pétrole 39:143–146.CrossRefGoogle Scholar
  45. Rybach L, Bodmer P. 1980. Die geothermischen Verhaltnisse der Schweizer Geotraverse im Abschnitt Basel-Luzem. Eclogae Geol Helv 73:501–512.Google Scholar
  46. Schärli U, Rybach L. 1991. Geothermische Detailkartierung der zentralen Nordschweiz 1:100’000. Beitr Geol Schweiz, Ser Geophysik 24:51 p.Google Scholar
  47. Schegg R. 1992. Coalification, shale diagenesis and thermal modelling in the Alpine Foreland basin: the Western Molasse basin (Switzerland/France). Org Geochem 18:289–300.CrossRefGoogle Scholar
  48. Schegg R. 1993. Thermal maturity and history of sediments in the North Alpine Foreland Basin (Switzerland, France). Geneva: Université de Genève, Publ du Département de Géologie et Paléontologie 15:194 p.Google Scholar
  49. Schegg R. 1994. The coalification profile of the well Weggis (Subalpine Molasse, Central Switzerland): Implications for erosion estimates and the paleogeothermal regime in the external part of the Alps. Bull Vereinigung schweiz Petroleum-Geol und -Ing 61:57–67.Google Scholar
  50. SCINTAG®. 1992. Users manual, version 2.15, 230 p.Google Scholar
  51. Shau Y-H, Peacor DR, Essene EJ. 1990. Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM, EMPA, XRD, and optical studies. Contrib Miner Petrol 105:123–142.CrossRefGoogle Scholar
  52. Smart G, Clayton T. 1985. The progressive illitization of interstratified illite-smectite from Carboniferous sediments of northern England and its relationship to organic maturity indicators. Clay Miner 20:455–466.CrossRefGoogle Scholar
  53. Sweeney JJ, Burnham AK. 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. Bull Am Assoc Petrol Geol 74:1559–1570.Google Scholar
  54. Teichmuller R, Teichmiiller M. 1986. Relations between coalification and palaeogeothermics in Variscan and Alpidic foredeeps of western Europe. In: Buntebarth G, Stegena L, editors. Paleogeothermics. Berlin-Heidelberg-New York-London-Paris-Tokyo: Springer-Verlag. Lecture Notes in Earth Sci 5:53–78.CrossRefGoogle Scholar
  55. Tissot BR Pelet R, Ungerer Ph. 1987. Thermal history of sedimentary basins, maturation indices and kinetics of oil and gas generation. Bull Am Assoc Petrol Geol 71:1445–1466.Google Scholar
  56. Velde B, Lanson B. 1993. Comparison of I/S transformation and maturity of organic matter at elevated temperatures. Clays Clay Miner 41:119–133.CrossRefGoogle Scholar
  57. Velde B, Vasseur G. 1992. Estimation of the diagenetic smectite to illite transformation in time-temperature space. Am Mineral 77:967–976.Google Scholar
  58. Weaver CE. 1989. Clays, muds, and shales. Amsterdam-Oxford-New York-Tokyo: Elsevier. Developments in Sedimentology 44:819 p.Google Scholar
  59. Wildi W, Huggenberger P. 1993. Reconstitution de la plateforme europeenne ante-orogenique de la Bresse aux Chaines subalpines; elements de cinematique alpine (France et Suisse occidentale). Eclogae Geol Helv 86:47–64.Google Scholar

Copyright information

© The Clay Minerals Society 1996

Authors and Affiliations

  • Roland Schegg
    • 1
    • 2
  • Werner Leu
    • 2
  1. 1.Département de Géologie et PaléontologieGeneva 4Switzerland
  2. 2.Geoform LtdWinterthurSwitzerland

Personalised recommendations