Characterization of human melanoma cell lines according to their migratory properties in vitro

  • Lius G. Quiñones
  • Ivette Garcia-Castro
Articles Cell and Tissue Models

Summary

The migratory responses of four human melanoma cell lines (A-2058, DEMEL, HTB-63, and HTB-72), using chemotaxis (CTX) and haptotaxis (HPTX) assays, were studied. The attractants were three extracellular matrix components (EMCs), fibronectin, laminin, and collagen type IV. The conditioned media (CM) of each cell line were used to study autocrine and paracrine responses. A screening and sensitive CTX assay was performed, using pertussis toxin (PTX)—treated A-2058 as responder cells; the other melanoma cells and normal cells were used as secretory cells. Autotaxin (ATX), a purified autocrine motility factor, was also used as a chemoattractant. Reverse transcriptase-polymerase chain reaction was used to detect the expression of ATX by all cell lines. The secretion of ATX was determined by Western blot. The invasive capacity of the cell lines was evaluated using Matrigel and ATX as attractant. Chemotaxis responses to EMCs varied. Except for the A-2058 cells, HPTX migration was low. Autocrine and paracrine responses also varied. The migration of PTX-treated A-2058 cells to ATX and to their own CM was abolished. All the melanoma cells expressed ATX, and except for the HTB-72 and normal cells, all secreted ATX. Matrigel was invaded by all the melanoma cell lines except the HTB-72 and normal cells. The migratory properties of human melanoma cells in vitro suggest that they could correlate to their metastatic potential in vivo.

Key words

autocrine motility factors autotaxin cell invasion chemotaxis extracellular matrix pertussis toxin-sensitive pathway 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atnip, K. D.; Nicolson, G. L.; Dabous, M. K. Chemotactic response of rat mammary adenocarcinoma cell clones to tumor-derived cytokines. Biochem. Biophys. Res. Commun. 146:996–1002; 1987.PubMedCrossRefGoogle Scholar
  2. Aznavoorian, S.; Murphy, A. N.; Stetler-Stevenson, W. G.; Liotta, L. A. Molecular aspects of tumor cell invasion and metastasis. Cancer 71:1368–1383; 1993.PubMedCrossRefGoogle Scholar
  3. Aznavoorian, S.; Stracke, M. L.; Krutzsch, H.; Schiffmann, E.; Liotta, L. A. Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells. J. Cell Biol. 10:1427–1438; 1990.CrossRefGoogle Scholar
  4. Coppock, D. L.; Tansey, J. B.; Nathanson, L. 12-0-Tetradecanoylphorbol-13-acetate induces transient cell cycle arrest in G1 and G2 in metastatic melanoma cell: inhibition of phosphorylation of p34cdc2. Cell Growth Differ. 3:485–494; 1992.PubMedGoogle Scholar
  5. Geiger, B.; Volberg, T.; Ginsberg, D.; Bitzur, S.; Sabanay, I. Broad spectrum pancadherin antibodies reactive with the C-terminal 24 aminoacid residues of N-cadherin antibodies reactive with the C-terminal 24 aminoacid residues of N-cadherin. J. Cell Sci. 97:607–614; 1990.PubMedGoogle Scholar
  6. Hujanen, E.; Terranova, V. P. Migration of tumor cells to organ-derived chemoattractants. Cancer Res. 45:3517–3521; 1985.PubMedGoogle Scholar
  7. Ishisaki, A.; Oida, S.; Momose, F.; Amagasa, T.; Rikimaru, K.; Ichijo H.; Sasaki, S. Identification and characterization of autocrine motility factor-like activity in oral squamous cell carcinoma cells. Int. J. Cancer 59;783–788; 1994.PubMedCrossRefGoogle Scholar
  8. Lee, H. Y.; Clair, T.; Mulvaney, P. T.; Woodhouse, E. C.; Aznavoorian S.; Liotta, L. A.; Stracke, M. L. Stimulation of tumor cell motility linked to phosphodiesterase catalytic site of autotaxin. J. Biol. Chem. 271:24408–24412; 1996a.PubMedCrossRefGoogle Scholar
  9. Lee, H. Y.; Murata, J.; Clair, T.; Polymeropoulos, M. H.; Torres, R.; Manrow, R. E.; Liotta, L. A.; Stracke, M. L. Cloning, chromosomal localization and tissue expression of autotaxin from human teratocarcinoma cells. Biochem. Biophys. Res. Commun. 218:714–719; 1996b.PubMedCrossRefGoogle Scholar
  10. Liotta, L. A.; Mandler, R.; Murano, G.; Katz, D. A.; Gordon, R. K.; Chiang, P. K.; Schiffmann E. Tumor cell autocrine motility factor. Proc. Natl. Acad. Sci. USA 83:3302–3306; 1986.PubMedCrossRefGoogle Scholar
  11. Liotta, L. A.; Schiffmann, E. Tumor motility factors. Cancer Surv. 7:632–652; 1988.Google Scholar
  12. Matsuyoshi, N.; Hamaguchi, M.; Taniguchi, S.; Nagafuchi, A.; Tsukita S.; Takeichi, M. Cadherin-mediated cell-cell adhesion in perturbed by v-src tyrosine phosphorylation in metastatic fibroblasts. J. Cell Biol. 118:703–714; 1992.PubMedCrossRefGoogle Scholar
  13. Murata, J.; Lee, H. Y.; Clair, T.; Krutzsch, H. C.; Arestad, A. A.; Sobel, M. E.; Liotta, L. A.; Stracke, M. L. cDNA cloning of the human tumor motility stimulating protein, autotaxin, reveals a homology with phosphodiesterases. J. Biol. Chem. 269:30479–30484; 1994.PubMedGoogle Scholar
  14. Nam, S. W.; Clair, T.; Campo, C. K.; Lee, H. Y.; Liotta, L. A.; Stracke, M. L. Autotaxin (ATX) a potent tumor motogen, augments invasive and metastatic potential of ras-transformed cells. Oncogene 19:241–247; 2000aPubMedCrossRefGoogle Scholar
  15. Nam, S. W.; Clair, T.; Schiffman, E.; Liotta, L. A.; Stracke, M. L. Sensitive screening assay for secreted motility-stimulating factors. Cell Motil. Cytoskeleton 46:279–284; 2000b.PubMedCrossRefGoogle Scholar
  16. Rosen, E. M.; Meromsky, L.; Setter E.; Vinter, D. E.; Goldberg, I. D. Quantification of cytokine stimulated migration of endothelium by a new assay using microcarrier beads. Exp. Cell Res. 186:22–31; 1990.PubMedCrossRefGoogle Scholar
  17. Silletti, S.; Paku, S.; Raz, A. Tumor cell motility and metastasis. Pathol. Oncol. Res. 3:230–253; 1997.CrossRefPubMedGoogle Scholar
  18. Silletti, S.; Paku, S.; Raz, A. Autocrine motility factor and the extracellular matrix I. Int. J. Cancer 76:120–128; 1998a.PubMedCrossRefGoogle Scholar
  19. Silletti, S.; Paku, S.; Raz, A. Autocrine motility factor and the extracellular matrix II. Int. J. Cancer 76:129–135; 1998b.PubMedCrossRefGoogle Scholar
  20. Silletti, S.; Raz, A. Autocrine motility factor is a growth factor. Biochem. Biophys. Res. Commun. 194:446–457; 1993.PubMedCrossRefGoogle Scholar
  21. Stracke, M. L.; Guirguis, R.; Liotta, L. A.; Schiffmann, E. Pertussis toxin inhibits stimulated motility indepently of the adenylate-cyclase pathway in human melanoma cells. Biochem. Biophys. Res. Commun. 83:3302–3306; 1987.Google Scholar
  22. Stracke, M. L.; Kohn, E. C.; Aznavoorian, S. A.; Wilson, L. L.; Salomon, D.; Krutzsch, H. C.; Liotta, L. A.; Schiffman, E. Insulin-like growth factor stimulates chemotaxis in human melanoma cells. Biochem. Biophys. Res. Commun. 153:1076–1083; 1988.PubMedCrossRefGoogle Scholar
  23. Stracke, M. L.; Krutzsch, H. C.; Unsworth, E. J.; Arestad, A.; Cioce, V.; Schiffmann, E.; Liotta, L. A. Identification, purification and partial sequence analysis of autotaxin, a novel-motility-stimulating protein. J. Biol. Chem. 267:2524–2529; 1992.PubMedGoogle Scholar
  24. Taraboletti, G.; Roberts, D. D.; Liotta, L. A. Thrombospondin growth factors produced by certain human-tumor cells: polypeptides that interact with epidermal growth factor receptors. Proc. Natl. Acad. Sci. USA 77:5258–5262; 1987.Google Scholar
  25. Watanabe, H.; Carmis, P.; Hogan, V.; Raz, T.; Silletti, S.; Nabi, I. R. Purification of human tumor cell autocrine motility factor and molecular cloning of its receptor. J. Biol. Chem. 266:13442–13448; 1991.PubMedGoogle Scholar

Copyright information

© Society for In Vitro Biology 2004

Authors and Affiliations

  • Lius G. Quiñones
    • 1
  • Ivette Garcia-Castro
    • 1
  1. 1.Biology DepartmentUniversity of Puerto RicoSan Juan

Personalised recommendations