Fortification of a protein-free cell culture medium with plant peptones improves cultivation and productivity of an interferon-γ-producing CHO cell line

  • Caroline C. Burteau
  • Françis R. Verhoeye
  • Johann F. Molsl
  • Jean-Sébastein Ballez
  • Spiros N. Agathos
  • Yves-Jacques Schneider


A strong tendency is currently emerging to remove not only serum but also any product of animal origin from animal cell culture media during production of recombinant proteins. This should facilitate downstream processing and improve biosafety. One way consists in the fortification of protein-free nutritive media with plant protein hydrolysates. To investigate the effects of plant peptones on mammalian cell cultivation and productivity, CHO 320 cells, a clone of CHO K1 cells genetically modified to secrete human interferon-γ (IFN-γ), were first adapted to cultivation in suspension in a protein-free medium. Both cell growth and IFN-γ secretion were found to be equivalent to those reached in serum-containing medium. Eight plant peptones, selected on the basis of their content in free amino acids and oligopeptides, as well as molecular weight distribution of oligopeptides, were tested for their ability to improve culture parameters. These were improved in the presence of three peptones, all having an important fraction of oligopeptides ranging from 1 to 10 kDa and a small proportion of peptides higher than 10 kDa. These peptones do not seem to add significantly to the nutritive potential to basal protein-free nutritive medium. Nevertheless, supplementation of an oligopeptide-enriched wheat peptone improved cell growth by up to 30% and IFN-γ production by up to 60% in shake-flask experiments. These results suggest that the use of plant peptones with potential growth factor-like or antiapoptotic bioactivities could improve mammalian cell cultivation in protein-free media while increasing the product biosafety.

Key words

cell culture system CHO 320 cells biosafety biopharmaceuticals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, D. C.; Krummen, L. Recombinant protein expression for therapeutic applications. Curr. Opin. Biotechnol. 13:117–123; 2002.PubMedCrossRefGoogle Scholar
  2. Castro, P. M. L.; Ison, A. P.; Hayter, P. M.; Bull, A. T The macroheterogeneity of recombinant human interferon-ψ produced by Chinese hamster ovary cells is affected by the protein and lipid content of the culture medium. Biotechnol. Appl. Biochem. 21:87–100; 1995.PubMedGoogle Scholar
  3. Castro, P. M. L.; Ison, A. P.; Hayter, P. M.; Bull, A. T. CHO cell growth and recombinant interferon-ψ production: effects of BSA, Pluronic and lipids. Cytotechnology 19:27–36; 1996.CrossRefGoogle Scholar
  4. Chan, R. Y. Y.; Ponka, P; Sculman, H. M. Transferrin-receptor-independent but iron-dependent proliferation of variant Chinese hamster ovary cells. Exp. Cell Res. 202:326–336; 1992.PubMedCrossRefGoogle Scholar
  5. Coppen, S. R.; Newsam, R.; Bull, A. T.; Baines, A. J. Heterogeneity within populations of recombinant Chinese hamster ovary cells expressing human interferon-ψ Biotechnol. Bioeng. 46:147–158; 1995.CrossRefPubMedGoogle Scholar
  6. Curling, E.; Hayter, P. M.; Baines, A. J.; Bull, A. T.; Gull, K.; Strange, P. G.; Jenkins, N. Recombinant human interferon-ψ. Differences in glycosylation and proteolytic processing lead to heterogeneity in batch culture. Biochem. J. 272:333–337; 1990.PubMedGoogle Scholar
  7. Dijkmans, R.; Heremans, H.; Billiau, A. Heterogeneity of Chinese hamster ovary cell produced recombinant murine interferon-ψ. J. Biol. Chem. 262(6):2528–2535; 1987PubMedGoogle Scholar
  8. Fekkes, D.; Van Dalen, A.; Edelman, M.; Voskuilen, A. Validation of the determination of amino acids in plasma by high-performance liquid chromatography using automated pre-colum derivatization with Ophthaldialdehyde. J. Chromatogr. B 669:177–186; 1995.CrossRefGoogle Scholar
  9. Franek, F.; Eckschlager, T; Katinger, H. Enhancement of monoclonal antibody production by lysine-containing peptides. Biotechnol. Prog. 19:169–174; 2003.PubMedCrossRefGoogle Scholar
  10. Franek, F.; Hohenwarter, O.; Katinger, H. Plant protein hydrolysates: preparation of defined peptide fractions promoting growth and production in animal cells culture. Biotechnol. Prog. 16:688–692; 2000.PubMedCrossRefGoogle Scholar
  11. Franek, F.; Katinger, H. Specific effects of synthetic oligopeptides on cultured animal cells. Biotechnol. Prog. 18:155–158; 2002.PubMedCrossRefGoogle Scholar
  12. Fussenegger, M.; Betenbaugh, M. J. Metabolic Engineering II. Eukaryotic Systems Biotechnol. Bioeng. 79(5):509–31; 2002.CrossRefGoogle Scholar
  13. Gu, X.; Harmon, B.; Wang, D. I. C. Site- and branch-specific sialylation of recombinant human interferon-ψ in Chinese hamster ovary cell culture. Biotechnol. Bioeng. 55:390–398; 1997.CrossRefPubMedGoogle Scholar
  14. Hasegawa, A.; Yamashita, H.; Kondo, S., et al. Proteose peptone enhances production of tissue-type plasminogen activator from human diploid fibroblasts. Biochem. Biophys. Res. Commun. 150(3):1230–1236; 1988.PubMedCrossRefGoogle Scholar
  15. Heidemann, R.; Zhang, C.; Qi, H., et al. The use of peptones as medium additives for the production of a recombinant therapeutic protein in high density perfusion cultures of mammalian cells. Cytotechnology 32:157–167; 2000.CrossRefPubMedGoogle Scholar
  16. Hooker, A.; James, D. The glycosylation heterogeneity of recombinant human IFN-Gamma. J. Interferon Cytokine Res. 18(5):287–95; 1998.PubMedCrossRefGoogle Scholar
  17. Hooker, A.; Goldman, M. H.; Markham, H. et al. N-Glycans of recombinant human interferon-ψ change during batch culture of Chinese hamster ovary cell. Biotechnol. Bioeng. 48:639–648; 1995.CrossRefPubMedGoogle Scholar
  18. Ikonomou, L.; Bastin, G.; Schneider, Y.-J.; Agathos, S. N. Design of an efficient medium for insect cell culture and recombinant protein production. In Vitro Cell. Dev. Biol. 37A:549–559; 2001.CrossRefGoogle Scholar
  19. James, D.; Goldman, M. H.; Hoare, M.; Jenkins, N.; Oliver, R. W. A.; Green, B. N.; Freedman, R. B. Post-translational processing of recombinant human interferon-ψ in animal expression systems. Protein Sci. 5:331–340; 1996.PubMedGoogle Scholar
  20. Jan, D. C.-H.; Jones, S. J.; Emery, A. N.; Al-Rubeai, M. Peptone, a low-cost growth-promoting nutrient for intensive animal cell culture. Cytotechnology 16:17–26; 1994.PubMedCrossRefGoogle Scholar
  21. Jayme, D.; Smith, S. R. Media formulation options and manufacturing process controls to safeguard agains introduction of animal origin contaminants in animal cell culture. Cytotechnology 33:27–36; 2000.CrossRefPubMedGoogle Scholar
  22. Mizrahi, A.: Primatone RL in mammalinan cell culure mediai. Biotechnol. Bioeng. 19:1557–1561; 1977.PubMedCrossRefGoogle Scholar
  23. Mols, J.; Burteau, C.; Verhoeyer, F.; Peeters-Joris, C.; Bastin, G; Agathos, S. N.; Schneider, Y. J. Proteolytic potential during batch cultivation in serum-free media of an IFN-ψ producing CHO cell line. In: Lindner-Olsson, E., ed. Animal cell technology: from target to market, Dordrecht, The Netherlands: Kluwer Academic Publishers; 2001:227–229.Google Scholar
  24. Rasmussen, B.; Davis, R.; Thomas, J.; Reddy, P. Isolation, characterization and recombinant protein expression in Veggie-CHO: a serum-free CHO host cell line. Cytotechnology 28:31–42; 1998.CrossRefPubMedGoogle Scholar
  25. Sakai, K.; Matsunaga, T.; Hayashi, C.; Yamaji, H.; Fukuda, H. Effects of phosphatidic acid on recombinant protein production by Chinese hamster ovary cells in serum-free culture. Biochem. Eng. J. 10:85–92; 2002.CrossRefGoogle Scholar
  26. Schlaeger, E.-J. The protein hydrolysate, Primatone RL, is a cost-effective multiple growth promoter of mammanlian cell culture in serum-containing and serum-free media and displays anti-apoptosis properties. J. Immunol. Methods 194:191–199; 1996.PubMedCrossRefGoogle Scholar
  27. Schneider, Y.-J. Optimization of hybridoma cell growth and monoclonal antibody secretion in chemically defined serum- and protein-free medium. J. Immunol. Methods 116:67–77; 1989.CrossRefGoogle Scholar
  28. Sunstrom, N.-A.; Hunt, S.; Bailey, C.; Baig, M.; Sleigh, M.; Gray, P. Hegulated autocrine growth of CHO cells. Cytotechnology 34:39–46; 2000.CrossRefPubMedGoogle Scholar
  29. Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Scil. USA 76:4350–4354; 1979.CrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2003

Authors and Affiliations

  • Caroline C. Burteau
    • 1
  • Françis R. Verhoeye
    • 1
  • Johann F. Molsl
    • 1
  • Jean-Sébastein Ballez
    • 1
  • Spiros N. Agathos
    • 2
  • Yves-Jacques Schneider
    • 1
  1. 1.Laboratoire de Biochimie cellulaire, Pl. L. Pasteur, 1Institut des Sciences de la Vie and Université catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Unité de Génie biologique, Pl. Croix du SudInstitut des Sciences de la Vie and Université catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations