The absence of prostaglandin E1 returned confluent cultures of highly proliferative murine polycystic kidney principal cells to a normal proliferation level



Constitutively high proliferation, loss of cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA)-regulated proliferation, and half-normal cAMP levels were observed previously in principal cells from the C57BL/6J-Cycl cpk (cpk) model of autosomal recessive polycystic kidneys disease (PKD) cultured in defined medium supplemented with prostaglandin E1 (PGE1). Because PGE1 can up- or down-regulate renal cAMP production depending upon its receptor coupling; cAMP exerted both PKA-dependent and PKA-independent effects on cell proliferation; proliferation is considered to be a component of cystogenesis; and PGE1 resulted in loss of tubular structures and formation of cystic structures in gel culture of Madin Darby Canine Kidney cells; the effect of removing PGE1 on murine principal cell proliferation was examined. Proliferation was measured in filter-grown cultures of cystic (cpk) and noncystic (C57) principal cells from cpk and C57BL/6J mice, respectively. Lack of PGE1 had no effect on subconfluent C57 and cpk cultures or confluent C57 cultures but had a dramatic effect on confluent cpk cultures. Without PGE1, cpk proliferation was comparble with the low C57 level. In PGE1-deficient medium, differences were observed between confluence conditions and cell types for responses to a cAMP analog and a PKA activity inhibitor that suggested altered regulation of both PKA-dependent and PKA-independent cell proliferation. Cyclic adenosine monophosphate-dependent differences reported here, and previously, support the idea that the combination of mutant PKD gene product, altered PGE1 responsiveness, and altered PKA targeting contributes to activation of a cystogenic signaling pathway that regulates principal cell proliferation and is involved in pathogenesis.

Key words

epithelia protein kinase A cyclic AMP cAMP PKA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avner, E. D.; Sweeney, W. E. Jr.; Piesco, N. P.; Ellis, D. Growth factor requirements of organogenesis in serum-free metanephric organ culture. In Vitro Cell. Dev. Biol. 21A:297–304; 1985.CrossRefGoogle Scholar
  2. Boie, Y.; Stocco, R.; Sawyer, N., et al. Molecular cloning and characterization of the four rat prostaglandin E2 prostanoid receptor subtypes. Eur. J. Pharmacol. 340:227–241; 1997.PubMedCrossRefGoogle Scholar
  3. Breyer, M. D.; Breyer, R. M. G protein-coupled prostanoid receptors and the kidney. Annu. Rev. Physiol. 63:579–605; 2001.PubMedCrossRefGoogle Scholar
  4. Busca, R.; Abbe, P.; Mantoux, F.; Aberdam, E.; Peyssonnaux, C.; Eychene, A.; Ortonne, J. P.; Ballotti, R. Ras mediates the cAMP-dependent activation of extracellular signal regulated kinases (ERKs) in melanocytes. EMBO J. 19:2900–2910; 2000.PubMedCrossRefGoogle Scholar
  5. Cass, L. A.; Summers, S. A.; Prendergast, G. V.; Backer, J. M.; Birnbaum, M. J.; Meinkoth, J. L. Protein kinase A-dependent and-independent signaling pathways contribute to cyclic AMP-stimulated proliferation. Mol. Cell. Biol. 19:5882–5891; 1999.PubMedGoogle Scholar
  6. Davis, I. D.; MacRae Dell, K.; Sweeney, W. E.; Avner, E. D. Can progression of autosomal dominant and autosomal recessive polycystic kidney disease be prevented? Semin. Nephrol. 21:430–440; 2001.PubMedCrossRefGoogle Scholar
  7. Fan, Y. Y.; Ramos, K. S.; Chapkin, R. S. Cell cycle related inhibition of mouse vascular smooth muscle cell proliferation by prostaglandin E1: relationship between prostaglandin E1 and intracellular cAMP levels. Prostaglandins Leukot. Essent. Fatty Acids 54:101–107; 1996.PubMedCrossRefGoogle Scholar
  8. Hanaoka, K.; Guggino, W. B. cAMP regulates cell proliferation and cyst formation in autosomal polycystic kidney disease cells. J. Am. Soc. Nephrol. 11:1179–1187; 2000.PubMedGoogle Scholar
  9. He, C.; Hobert, M.; Friend, L.; Carlin, C. The epidermal growth factor receptor juxtamembrane domain has multiple basolateral plasma membrane localization determinants, including a dominant signal with a polyproline core. J Biol. Chem. 277:38284–38293; 2002.PubMedCrossRefGoogle Scholar
  10. Hou, X.; Mrug, M.; Yoder, B. K., et al. Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J. Clin. Invest. 109:533–540; 2002.PubMedCrossRefGoogle Scholar
  11. Igarishi, P.; Somlo, S. Genetics and pathogenesis of polycystic kidney disease. J. Am. Soc. Nephrol. 13:2384–2398; 2002.CrossRefGoogle Scholar
  12. Kiriyama, M.; Ushikubi, F.; Kobayashi, T.; Hirata, M.; Sugimoto, Y.; Narumiya, S. Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br. J. Pharmacol. 122:217–224; 1997.PubMedCrossRefGoogle Scholar
  13. Levin, G.; Duffin, K. L.; Obukowicz, M. G.; Hummert, S. L.; Fujiwara, H.; Needleman, P.; Raz, A. Differential metabolism of dihomo-γ-linoleic acid and arachidonic acid by cyclo-oxygenase-1 and cyclo-oxygenase-2: implications for cellular synthesis of prostaglandin E1 and prostaglandin E2. Biochem. J. 365:489–496;2002.PubMedCrossRefGoogle Scholar
  14. Marfella-Scivittaro, C.; Quiñones, A.; Orellana, S. A. Cyclic AMP-dependent protein kinase and proliferation differ in normal and polycystic kidney epithelia. Am. J. Physiol. Cell Physiol. 282:C693-C707; 2002.PubMedGoogle Scholar
  15. Nagao, S.; Yamaguchi, T.; Kusaka, M.; Maser, R. L.; Takahashi, H.; Cowley, B. D.; Grantham, J. J. Renal activation of extracellular signal-regulated kinase in rats with autosomal-dominant polycystic kidney disease. Kidney Int. 63:427–437; 2003.PubMedCrossRefGoogle Scholar
  16. Orellana, S. A.; Marfella-Scivittaro, C. Distinctive cyclic AMP-dependent protein kinase subunit localization is associated with cyst formation and loss of tubulogenic capacity in Madin Darby Canine Kidney cell clones. J. Biol. Chem. 275:21233–21240; 2000.PubMedCrossRefGoogle Scholar
  17. Orellana, S. A.; Neff, C. D.; Sweeney, W. E.; Avner, E. D. Novel Madin Darby Canine Kidney cell clones exhibit unique phenotypes in response to morphogens. In Vitro Cell. Dev. Biol. 32A:329–339; 1996.Google Scholar
  18. Orellana, S. A.; Quiñones, A. M.; Mandapat, M. L. Ezrin distribution is abnormal in principal cells from a murine model of autosomal recessive polycystic kidney disease. Ped. Res., 54:406–412; 2003.CrossRefGoogle Scholar
  19. Schmidt, M.; Evellin, S.; Weernink, A. P.; von Dorp, F.; Rehmann, H.; Lomasney, J. W.; Jakobs, K. A. A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat. Cell Biol. 3:1020–1024; 2001.PubMedCrossRefGoogle Scholar
  20. Sweeney, W. E.; Avner, E. D. Functional activity of epidermal growth facotr receptors in autosomal recessive polycystic kidney disease. Am. J. Physiol. Renal Physiol. 275:F387-F394; 1998.Google Scholar
  21. Sweeney, W. E.; Chen, Y.; Nakanishi, K.; Frost, P.; Avner, E. D. Treatment of polycystic kidney disease with a novel tyrosine kinase inhibitor. Kidney Int. 57:33–40; 2000.PubMedCrossRefGoogle Scholar
  22. Sweeney, W. E., Jr.; Dell, K. D.; Cotton, C. U.; Carlin, C.; Orellana, S.; Avner, E. D. Therapeutic intervention in PKD: an update from the rainbow center for childhood PKD. PKD Foundation Prog. 16:12; 2001Google Scholar
  23. Tasken, K.; Skalhegg, B. S.; Tasken, K. A., et al. Structure, function, and regulation of human cAMP-dependent protein kinases. Adv. Second Messenger Phosphoprotein Res. 31:191–204; 1997.PubMedGoogle Scholar
  24. Yamaguchi, T.; Nagao, S.; Wallace, D. P.; Belibi, F. A.; Cowley, B. D.; Pelling, J. C.; Grantham, J. J. Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys. Kidney Int. 63:1983–1994; 2003.PubMedCrossRefGoogle Scholar
  25. Yamaguchi, T.; Pelling, J. C.; Ramaswamy, N. T., et al. cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney Int. 57:1460–1471; 2000.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2003

Authors and Affiliations

  • Stephanie A. Orellana
    • 1
    • 2
    • 3
  • Andrea M. Quiñones
    • 1
  1. 1.Department of PediatricsCase Western Reserve University School of MedicineCleveland
  2. 2.Department of Physiology and BiophysicsCase Western Researve University School of MedicineCleveland
  3. 3.The Rainbow Center for Childhood PKDRainbow Babies and Children's Hospital University Hospitals of Cleveland, Research InstituteCleveland

Personalised recommendations