Advertisement

Effects of a fat body extract on larval midgut cells and growth of lepidoptera

  • Guy J. Smagghe
  • Kim Elsen
  • Marcia J. Loeb
  • Dale B. Gelman
  • Michael Blackburn
Reports

Summary

Treatment with fat body extract (FBX) from pupae of the tobacco hornworm, Manduca sexta, caused mortality in larvae of two pest lepidopterans, the gypsy moth, Lymantria dispar, and the cotton leafworm, Spodoptera littoralis. In FBX-treated larvae, the feeding rate was depressed, causing reduced weight gain and then larval death. Their midgut showed formation of multicellular layers of midgut epidermis, indicating stem-cell hyperplasia. Hence, the integument of FBX-treated larvae had a double cuticle, indicating induction of premature molting. But radioimmunoassay measurements confirmed that the amount of ecdysteroids in FBX was too low to be responsible for the molt-inducing effects observed after treatment with FBX. With midgut stem cell cultures in vitro, addition of FBX to the culture medium stimulated cell proliferation and differentiation in a concentraton-dependent manner. This effect was compared with those of insect molting hormones, ecdystone and 20-hydroxyecdysone; an ecdysteroid agonist, RH-2485; and a purified protein from FBX (multiplication factor). This article describes the mode of action of FBX and possible interplay between fat body factor(s) and insect hormones in the development and metamorphosis of the insect midgut.

Key words

midgut stem cells 20-hydroxyecdysone metamorphosis hyperplasia Lymantria dispar Spodoptera littoralis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akai, H. Ultrastructure of the guts. In: Akai, H., ed. Ultrastructural morphology of insects. Tokyo: University of Tokyo Press; 1976:237–285.Google Scholar
  2. Bell, R.; Owens, C. D.; Shapiro, M.; Tardif, J. R. Mass rearing and virus production. In: Doane, C. C.; McManus, M. L. ed. The gypsy moth: research toward integrated pest management, Chapter 6.5, No 1584. Washington DC: USDA-ARS; 1981:599–655.Google Scholar
  3. Benson, J.; Oberlander, H.; Koreeda, M.; Nakanishi, K. Isolation of a fat body factor which stimulates evagination of Galleria mellonella wing discs in vitro. Wilhelm Roux's Archs. 175:327–338; 1974.CrossRefGoogle Scholar
  4. Billingsley, P. F.; Lehane, M. J. Structure and ultrastructure of the insect midgut. In: Lehane, M. J.; Billingsley, P. E., ed., Biology of the insect midgut. London: Chapman and Hall; 1996:3–30.Google Scholar
  5. Carazzi, D. Eine neue Haematoxylinloesung. Z. Wiss Mikr 28:273–274; 1911.Google Scholar
  6. Gelman, D. B.; Khalidi, A. A.; Loeb, M. J. Improved technique for the rapid radioimmunoassay of ecdysteroids and other metabolites. Invert. Reprod. Dev. 32:122–129; 1997.Google Scholar
  7. Giebultowicz, J. M.; Loeb, M. J.; Borkovec, A. B. In vitro spermatogenesis in lepidopteran larvae: role of the testis sheath. Int. J. Invert. Reprod. Dev. 11:211–216; 1987.Google Scholar
  8. Hogan, B. L.; Blessing, M.; Winnier, G. E.; Suzuki, N.; Jones, C. M. Growth factor in development: the role of TGF-beta related polypeptide signalling molecules in embryogenesis. Development 1994 (Suppl.):53–60; 1994.Google Scholar
  9. Homma, K.; Tanaka, Y.; Matsushita, T.; Yokoyama, K.; Matsui, H.; Natori, S. Adenosine deaminase activity of insect-derived growth factor is essential for its growth factor activity. J. Biol. Chem. 276:43761–43766; 2001.PubMedCrossRefGoogle Scholar
  10. Judy, K. J.; Gilbert, L. I. Histology of the alimentary canal during the metamorphosis of Hyalophora cecropia (L). J. Morphol. 131:277–300; 1969.CrossRefGoogle Scholar
  11. Loeb, M. J. Characterization of genital tract growth factor-like activity from testis sheaths and fat body of Heliothis virescens. Arch. Insect Biochem, Physiol. 26:263–277; 1994.CrossRefGoogle Scholar
  12. Loeb, M. J.; Clark, E. A.; Blackburn, M.; Hakim, R. S.; Elsen, K.; Smagghe, G. Stem cells midguts of Heliothis virescens and Lymantria dispar larvae: Clues to the regulation of stem cell fate. Arch. Insect Biochem. Physiol. 2003. Accepted for publication.Google Scholar
  13. Loeb, M. J.; Hakim, R. S. Development of genital imaginal discs of Heliothis virescens culture in vitro with 20-hydroxyedysone and fat body or testis sheaths. Invert. Reprod. Dev. 20:181–191; 1991.Google Scholar
  14. Loeb, M. J.; Hakim, R. S. Insect midgut epithelium in vitro: an insect stem cell system. J. Insect Physiol. 42:1103–1111; 1996.CrossRefGoogle Scholar
  15. Loeb, M. J.; Jaffe, H.; Gelman, D. B.; Hakim, R. S. Two polypeptide factors that promote differentiation of insect midgut stem cells in vitro. Arch. Insect Biochem. Physiol. 40:129–140; 1999.PubMedCrossRefGoogle Scholar
  16. Oberlander, H.; Fulco, L. Growth and partial metamorphosis of imaginal disks of the greater wax moth, Galleria mellonella, in vitro. Nature 216:1140–1141; 1967.CrossRefGoogle Scholar
  17. Oberlander, H.; Tomblin, C. Cuticle deposition in imaginal disces: effects of juvenile hormone and fat body in vitro. Science 177:441–442; 1972.PubMedCrossRefGoogle Scholar
  18. Rees, H. H. Biosynthesis of ecdysone. In: Kerkut, G. A.; Gilbert, L. I., ed. Comprehensive insect physiology biochemistry and pharmacology. Vol. 7, Oxford: Pergamon Press; 1985:249–293.Google Scholar
  19. Riddiford, L. M. Hormonal action at the cellular level. In: Kerkut, G. A.; Gilbert, L. I., ed. Comprehensive insect physiology biochemistry and pharmacology. Vol. 8. Oxford: Pergamon Press; 1985:37–84.Google Scholar
  20. Sadrud-din, S. Y.; Hakim, R. S.; Loeb, M. J. Proliferation and differentiation of midgut epithelial cells from Manduca sexta, in vitro. Invert. Reprod. Dev. 26:197–204; 1994.Google Scholar
  21. Slack, J. M. W. Stem cells in epithelial tissues. Science 287:1431–1433; 2000.PubMedCrossRefGoogle Scholar
  22. Smagghe, G.; Carton, B.; Decombel, L.; Tirry, L. Significance of absorption, oxidation and binding to toxicity of four ecdysone agonists in multiresistant cotton leafworm. Arch. Insect Biochem. Physiol. 46:127–139; 2001a.PubMedCrossRefGoogle Scholar
  23. Smagghe, G.; Carton, B.; Heirman, A.; Tirry, L. Toxicity of four dibenzoylhydrazine correlates with evagination-induction in the cotton leafworm. Pestic. Biochem. Physiol. 68:49–58; 2000.CrossRefGoogle Scholar
  24. Smagghe, G.; Loeb, M.; Tirry, L. In vivo and in vitro effects of a fat body extract on Spodoptera littoralis. In Vitro Cell. Dev. Biol. 37A: 90–92; 2001b.CrossRefGoogle Scholar
  25. Smagghe, G.; Nakagawa, Y.; Carton, B.; Mourad, A. K.; Fujita, T.; Tirry, L. Comparative ecdysteroid action of ring-substituted dibenzoylhydrazines in Spodoptera exigua. Arch. Insect Biochem. Physiol. 41:42–53; 1999.CrossRefGoogle Scholar
  26. Smagghe, G.; Viñuela, E.; Budia, F.; Degheele, D. In vivo and in vitro effects on cuticle formation in Spodoptera exigua: an ultrastructural approach. Arch. Insect Biochem. Physiol. 32:121–134; 1996.CrossRefGoogle Scholar
  27. Smith, S. L. Regulation of ecdysteroid titer: synthesis. In: Kerkut, G. A.; Gilbert, L. I., ed. Comprehensive insect physiology biochemistry and pharmacology. Vol. 7. Oxford: Pergamon Press; 1985:295–341.Google Scholar
  28. Tanaka, Y.; Yukuhiro, F. Ecdysone has an effect on the regeneration of midgut epithelial cells that is distinct from 20-hydroxyecdysone in the silkworm Bombyx mori. Gen. Comp. Endocrinol. 116:382–395; 1999.PubMedCrossRefGoogle Scholar
  29. Yund, M. A.; Osterbur, D. L. Ecdysteroid receptors and binding proteins. In: Kerkut, G. A.; Gilbert, L. I., ed. Comprehensive insect physiology biochemistry and pharmacology. Vol. 7. Oxford: Pergamon Press; 1985:473–490.Google Scholar

Copyright information

© Society for In Vitro Biology 2003

Authors and Affiliations

  • Guy J. Smagghe
    • 1
    • 2
  • Kim Elsen
    • 2
  • Marcia J. Loeb
    • 3
  • Dale B. Gelman
    • 3
  • Michael Blackburn
    • 3
  1. 1.Laboratory of Agrozoology, Department of Crop Protection, Faculty of Agricultural and Applied Biological SciencesGhent UniversityGhentBelgium
  2. 2.Laboratory of Cellular Genetics, Department of BiologyFree University of BrusselsBrusselsBelgium
  3. 3.Insect Biocontrol LaboratoryUSDA-ARSBeltsville

Personalised recommendations