Growth of an ovarian cell line of Galleria mellonelia and its response to immune-inducing factors

  • Robert J. Zakarian
  • Gary B. Dunphy
  • Jean-Marie Quiot
Articles Cell Growth/Differentiation/Apoptosis

Summary

Antibacterial proteins are produced in the reproductive tracts of some insect species. The advent of a pupal ovarian cell line of the lepidopteran Galleria mellonella offered an opportunity for exploring the use of ovarian tissue culture to induce antimicrobial proteins in lieu of the larvae. The ovarian cell growth rates and cell yields were maximized by ajdusting Grace's medium to pH 6.5 adding 15% (v/v) qualified heat-inactivated fetal calf serum, and lowering the sucrose concentration to 9.3 g/L. Five cell forms and biochemical profiles of the collective cell types were analyzed throughout the culture growth cycle. The final modified culture, medium did not affect morphogenesis, whereas it increased the cultured growth rate by 50% and the final cell yield threefold. The molting and immunoprotein-inducing hormone, 20-hydroxyecdysone, increased culture growth rate and altered the levels of cell types A and D. Neither 20-hydroxyecdysone nor the larval immunizing agents, apolipophorin-III or Bacillus subtilis, in combination or alone, induced antibacterial activity. The bacterium did induce immunity in both larval and adult stages.

Key words

ovarian morphogenesis apolipophorin III 20-hydroxyecdysone Galleria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, X.; Aston, W. P.; Chadwick, J. S. Lipoteichoic acid (CTA) induction of immunity in Galleria mellonella, [abstract]. In: 42nd Annual Meeting of the Canadian Society of Microbiology: 1992. p. 53. Toronto, Canada.Google Scholar
  2. Andrejko, M. E. Exoproteinases of the type A in pathogenesis of insect bacterial diseases. Folia Biol. 47:135–141; 1999.Google Scholar
  3. Azambuja, P.; Garcia, E. S.; Ratcliffe, N. A.; Warthen, J. D., Jr. Immune-depression in Rhodnius prolixus induced by the growth inhibitor, azadirachtin. J. Insect Physiol. 37:771–777; 1991.CrossRefGoogle Scholar
  4. Baines, D. New approaches to insect tissue culture. Cytotechnology 20:13–22; 1996.CrossRefGoogle Scholar
  5. Bedard, C.; Tom, R.; Kamen, A. Growth, nutrient consumption, and endproduct accumulation in Sf-9 and BTI-EAA insect cell cultures: insights into growth limitation and metabolism. Biotechnol. Prog. 9:615–624; 1993.PubMedCrossRefGoogle Scholar
  6. Brookman, J. L.; Rowley, A. F.; Ratcliffe, N. A. Studies on nodule formation in locusts following injection of microbial products. J. Invertebr. Pathol. 53:315–322; 1989.CrossRefGoogle Scholar
  7. Chadwick, J. S.; Aston, P. Antibacterial immunity in Lepidoptera. In: Gupta, A. P., ed. Immunology of insects and other arthropods. Boca Raton, FL: CRC Press; 1991:347.Google Scholar
  8. Chalk, R.; Suliaman, W. Y. Antimicrobial peptides from small insects: methods for insect culture and for the detection, visualization, isolation and sequencing of active hemolymph peptides. In: Wiesner, A.; Dunphy, G. B.; Marmaras, V. J.; Morishima, J.; Suguamaran, M., and Yamakawa, M., ed. Techniques in insect immunology. Fairhaven, NJ: SOS Publications; 1998:109–124.Google Scholar
  9. Chiu, J. K.; Aston, W. P.; Chadwick, J. S. A suggested role for phospholipase C in the immune response of Galleria mellonella. J. Invertebr. Pathol. 57:128–130; 1991.CrossRefGoogle Scholar
  10. Cymborowski, B. Temperature-dependent regulatory mechanism of larval development of the wax moth (Galleria mellonella). Acta Biochim Pol. 47:215–221; 2000.PubMedGoogle Scholar
  11. Dettloff, M.; Kaiser, B.; Wiesner, A. Localization of injected apolipophorin III in vivo—new insights into the immune activation process directed by this protein. J. Insect Physiol. 47:789–797; 2001.PubMedCrossRefGoogle Scholar
  12. Deverno, P. J.; Chadwick, J. L.; Aston, W. P.; Dunphy, G. B. The in vitro generation of an antibacterial activity from the fat body and hemolymph of nonimmunized larvae of Galleria mellonella. Dev. Comp. Immunol. 8:537–546; 1984.CrossRefGoogle Scholar
  13. Dhadialla, T. S.; Tzertzinis, G. Characterization and partial cloning of ecdysteriod receptor from the cotton boll weevil embryonic cell line. Arch. Insect Biochem. Physiol. 35:45–57; 1997.PubMedCrossRefGoogle Scholar
  14. Dimarcq, J.-L.; Imler, J. K.-L.; Lanot, R.; Ezekowitz, R. A. B.; Hoffmann J. A.; Janeway, C. A.; Lagueux, M. Treatment of 1(2)mbn Drosophila tumorous blood cells with the steroid hormone ecdysone amplifies the inducibility of antimicrobial peptide gene expression. Insect Biochem. Mol. Biol. 27:877–886; 1997.PubMedCrossRefGoogle Scholar
  15. Dimopoulos, G.; Richman, A.; Müller, H. M.; Kafatos, F. C. Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc. Natl. Acad. Sci. USA 94:11508–11513; 1997.PubMedCrossRefGoogle Scholar
  16. Dunphy, G. B.; Halwani, A. E. Haemolymph proteins of larvae of Galleria mellonella detoxify endotoxins of the insect pathogenic bacteria Xenorhabdus nematophilus (Enterobacteriaceae). J. Insect Physiol. 43:1023–1029; 1997.PubMedCrossRefGoogle Scholar
  17. Frobius, A. C.; Kanost, M. R.; Götz, P.; Vilcinskas, A. Isolation and characterization of novel inducible serine proteases inhibitors from larval hemolymph of the greater wax moth Galleria mellonella. Eur. J. Biochem. 267:2046–2053; 2000.PubMedCrossRefGoogle Scholar
  18. Furukawa, S.; Taniai, K.; Yang, J.; Shono, T.; Yamakawa, M. Induction of gene expression of antibacterial proteins by chitin oligomers in the silkworm, Bombyx mori. Insect. Mol. Biol. 8:145–148; 1999.PubMedCrossRefGoogle Scholar
  19. Gillespie, J. P.; Kanost, M. R.; Trenczek, T. Biological mediators of insect immunity. Annu. Rev. Entomol. 42:611–645; 1997.PubMedCrossRefGoogle Scholar
  20. Goodwin, R. H. Insect cell culture: improved media and methods for initiating attached cell lines from the Lepidoptera. In Vitro 11:369–378; 1975.PubMedCrossRefGoogle Scholar
  21. Grace, T. D. C. Establishment of four strains of cells from insect tissues grown in vitro. Nature 195:788–789; 1962.PubMedCrossRefGoogle Scholar
  22. Grace, T. D. C.; Brzostowski, H. W. Analysis of the amino acids and sugars in insect cell culture medium during cell growth. J. Insect Physiol. 12:625–633; 1966.CrossRefGoogle Scholar
  23. Griesch, J.; Wedde, M.; Vilcinskas, A. Recognition and regulations of metalloproteinase activity in the haemolymph of Galleria mellonella: a new pathway medicating induction of humoral immune responses. Insect Biochem. Mol. Biol. 30:461–472; 2000.PubMedCrossRefGoogle Scholar
  24. Halwani, A. E.; Dunphy, G. B. Apolipophorin-III in Galleria mellonella potentiates hemolymph lytic activity. Dev. Comp. Immunol. 23:563–570; 1999.PubMedCrossRefGoogle Scholar
  25. Halwani, A. E.; Niven, D. F.; Dunphy, G. B. Apolipophorin-III in the greater waxmoth, Galleria mellonella (Lepidoptera: Pyralidae). Arch. Insect Biochem. Physiol. 48:135–143; 2001.PubMedCrossRefGoogle Scholar
  26. Hensler, W.; Singh, V.; Agathus, S. N. SF9 insect cell growth and β-galactosidase production in serum and serum-free media. Ann. NY Acad. Sci. 745:149–166; 1994.PubMedCrossRefGoogle Scholar
  27. Hultmark, D. Quantification of antimicrobial activity, using the inhibition zone assay. In: Wiesner, A.; Dunphy, G. B.; Marmaras, V. J.; Morishima, J., Suguamaran, M., and Yamakawa, M., ed. Techniques in insect immunology. Fairhaven, NJ: SOS Publications; 1998:103–108.Google Scholar
  28. Imanishi, S.; Cho, E.-S.; Tomita, S. Novel Bombyx mori cell lines cultivable at 37°C. Appl. Entomol. Zool. 34:259–266; 1999.Google Scholar
  29. Jones, J. C. Effects of repeated hemolymph withdrawals and ligaturing the head on differential haemocyte counts of Rhodnius prolixus. J. Insect Physiol. 13:1351–1360; 1967.CrossRefGoogle Scholar
  30. Kim, E.; Kim, S. H.; Choi, C. S.; Park, Y. I.; Kim, H. R. Cloning and expression of apolipophorin-III from the common cutworm, Spodoptera litura. Arch. Insect Biochem. Physiol. 39:166–173; 1998.PubMedCrossRefGoogle Scholar
  31. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:608–685; 1970.Google Scholar
  32. Lery, X.; Fediere, G.; Taha, A.; Salah, M.; Giannotti, J. A new small RNA virus persistently infecting an established cell line of Galleria mellonella, induced by a heterologous infection. J. Invertebr. Pathol. 69:7–13; 1997.PubMedCrossRefGoogle Scholar
  33. Lung, O.; Kuo, L.; Wolfner, M. F. Drosophila males transfer antibacterial proteins from their accessory gland and ejaculatory duct to their mates. J. Insect Physiol. 47:617–622; 2001.PubMedCrossRefGoogle Scholar
  34. Marchini, D.; Bernini, L. F.; Marri, L.; Giordano, P. C.; Dallai, R. The female reproductive accessory glands of the medfly Ceratitis capitata: antibacterial activity of the secretion fluid. Insect Biochem. 21:597–605; 1991.CrossRefGoogle Scholar
  35. Marchini, D.; Giordano, P. C.; Amons, R.; Berini, L. F.; Dallai, R. Purification and primary structure of reproductive accessory glands of the medfly Ceratitis capitata (Insecta: Diptera). Insect Biochem. Mol. Biol. 23:591–598; 1993.PubMedCrossRefGoogle Scholar
  36. Marek, M.; Kroeger, H. Influence of Na+, K+, Mg2+ and cooling on proteosynthesis in hemocytes of Galleria mellonella. Comp. Biochem. Physiol. 53B:45–47; 1976.Google Scholar
  37. Mikolajaczyk, P.; Cymborowski, B. Lower temperature influences developmental rhythms of the wax moth Galleria mellonella: putative role of ecdysteroids. Comp. Biochem. Physiol. 105A:57–66; 1993.Google Scholar
  38. Mitsuhashi, J. Establishment of cell lines from the pupal ovaries of the swallow tail, Popilio xuthus Linne (Lepidoptera: Papilionidae). Appl. Entomol. Zool. 8:64–72; 1973.Google Scholar
  39. Mitsuhashi, J. Establishment and characterization of continuous cell lines from pupal ovaries of the cabbage armyworm, Mamestra brassicae (Lepidoptera: Noctuidae). Dev. Growth Differ. 19:337–344; 1977.CrossRefGoogle Scholar
  40. Mitsuhashi, J. A continuous cell line from pupal ovaries of the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 30:75–82; 1995a.Google Scholar
  41. Mitsuhashi, J. Effects of various conditioned media on proliferation of an isolated single cell from insect cells lines. In Vitro Cell. Dev. Biol. 31A:814–816; 1995b.Google Scholar
  42. Mitsuhashi, J.; Crace, T. D. C. The effects of insect hormones on the multiplication rates of cultured insect cells in vitro. Appl. Entomol. Zool. 5:182–188; 1970.Google Scholar
  43. Mollier, P.; Lagnel, J.; Quiot, J. M.; Aioun, A.; Riba, G. Cytotoxic activity in culture filtrates from the entomopathogenic fungus Beauveria sulfurescens. J. Invertebr. Pathol. 64:208–213; 1994.CrossRefGoogle Scholar
  44. Morishima, I. Cecropin and lysozyme induction by peptidoglycan fragments in cultured fat body from Bombyx mori. In: Wiesner, A.; Dunphy, G. B.; Marmaras, V. J.; Morishima, J.; Suguamaran, M., and Yamakawa M., ed. Techniques in insect immunology. Fairhaven, NJ: SOS Publications; 1998:59–64.Google Scholar
  45. Morton, D. B.; Dunphy, G. B.; Chadwick, J. S. Reactions of hemocytes of immune and non-immune Galleria mellonella larvae to Proteus mirabilis. Dev. Comp. Immunol. 11:47–55; 1987.PubMedCrossRefGoogle Scholar
  46. Müller, H.-M.; Dimopoulos, G.; Blass, C.; Kafatos, F. C. A hemocyte-like cell line established from the malaria vector Anopheles gambiae expresses six prophenoloxidase genes. J. Biol. Chem. 274:11727–11735; 1999.PubMedCrossRefGoogle Scholar
  47. Niere, M.; Meisslitzer, M.; Dettloff, M.; Weise, C.; Ziegler, M.; Wiesner, A. Insect immune activation by recombinant Galleria mellonella apolipophorin III. Biochem. Biophys. Acta 1433:16–26; 1999.PubMedGoogle Scholar
  48. Pye, A. E. Activation of prophenoloxidase and inhibition of melanization of the haemolymph or immune Galleria mellonella. Insect Biochem. 8:117–123; 1978.CrossRefGoogle Scholar
  49. Rao, C. G. P.; Ray, A.; Ramamarty, P. S. Effect of ligation and ecdysone on total haemocyte counts in the tobacco caterpillar Spodoptera litura (Noctuidae: Lepidoptera). Can. J. Zool. 62:1461–1463; 1984.CrossRefGoogle Scholar
  50. Roos, E.; Bjorklung, G.; Engstrom, Y. In vivo regulation of tissue-specific and LPS-inducible expression of the Drosophila cecropin genes. Insect Mol. Biol. 7:51–62; 1998.PubMedCrossRefGoogle Scholar
  51. Samakovlis, C.; Kylsten, P.; Kimbrell, D. A.; Engström, Å. Hultmark, D. The andropin gene and its product, a male-specific antibacterial peptide in Drosophila melanogaster. EMBO J. 10:163–169; 1991.PubMedGoogle Scholar
  52. Scapigliati, G.; Pecci, M.; Piermatte, A.; Mazzini, M. Characterization of a monoclonal antibody against a 18 kDa hemocyte peptide involves in cellular defence reactions of the stick insect Bacillus rossius. J. Insect Physiol. 43:345–354; 1997.PubMedCrossRefGoogle Scholar
  53. Sohi, S. S.; Palli, S. R.; Cook, B. J.; Retnakaran, A. Forest insect cell lines responsive to 20-hydroxyecdysone and two nonsteroidal ecdysone agonists, H-5489 and RH-5992. J. Insect Physiol. 41:457–464; 1995.CrossRefGoogle Scholar
  54. Sokal, R. R.; Rohlf, F. J. Biometry, New York, Freeman Press, 1969.Google Scholar
  55. Taniai, K.; Wago, H.; Yamakawa, M. In vitro phagocytosis of Escherichia coli and release of lipopolysaccharide by adhering hemocytes of the silk-worm, Bombyx mori. Biochem. Res. Commun. 231:623–627; 1997.CrossRefGoogle Scholar
  56. Tingwall, T. Ö.; Roos, E.; Engström Y. The GATA factor serpent is required for the onset of humoral immune response in Drosophila embryos. PNAS 98:3884–3888; 2001.CrossRefGoogle Scholar
  57. Vaughn, J. L.; Fan, F. Differential requirements of two insect cell lines for growth in serum-free medium. In Vitro Cell. Dev. Biol. 33A:479–482; 1997.Google Scholar
  58. Vilcinskas, A.; Jegorov, A.; Landa, Z.; Götz, P.; Matha, V. Effects of beauverolide L and cyclosporin A on humoral and cellular immune response of the greater wax moth, Galleria mellonella. Comp. Biochem. Physiol. 122C:83–92; 1999.Google Scholar
  59. Wiesner, A.; Losen, S.; Kopaček, P.; Weise, C.; Götz, P. Isolated apolipophorin III from Galleria mellonella stimulates the immune reactions of this insect. J. Insect Physiol. 43:383–391; 1997.PubMedCrossRefGoogle Scholar
  60. Wittwer, D.; Wiesner, A. Insect cell stimulation by LPS requires the activity of cell-released proteases. Arch. Insect Biochem. Physiol. 46:107–113; 2001.CrossRefGoogle Scholar
  61. Wu, J.; Ruan, Q.; Lam, H. Y. P. Effects of surface-active medium additives on insect cell surface hydrophobicity relating to cell protection against bubble damage. Enzyme Microb. Technol. 21:341–348; 1997.CrossRefGoogle Scholar
  62. Yun, H. K.; Kim, H. R. Immunological analysis of apolipophorin-III in the haemolymph, ovaries, and testes of the fall webworm, Hyphantria cunea (Drury). Arch. Insect Biochem. Physiol. 31:413–426; 1996.CrossRefGoogle Scholar
  63. Zakarian, R. J.; Dunphy, G. B.; Albert, P. J.; Rau, M. E. Apolipophorin-III affects the activity of the haemocytes of Galleria mellonella larvae. J. Insect Physiol. 48:717–725; 2002.CrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2002

Authors and Affiliations

  • Robert J. Zakarian
    • 1
  • Gary B. Dunphy
    • 1
  • Jean-Marie Quiot
    • 2
  1. 1.Department of Natural Resource SciencesMcGill UniversitySte Anne de BellevueCanada
  2. 2.La Pougarde F30380Saint-Christol-Les-AlesFrance

Personalised recommendations